119 research outputs found

    Legally Strong Shareholders of Japan

    Get PDF
    Foreign investors often criticize Japanese corporations for not paying enough attention to the interests of their shareholders. It might surprise these critics, then, to learn that shareholders’ legal rights under the Japanese Companies Act are actually quite strong. Indeed, many of the rights that shareholders’ rights advocates often support, including shareholders’ power to alter a corporate charter without board consent, shareholders’ power to control dividend payments, majority voting for board elections, shareholders’ power to replace the board of directors, and shareholder access to a corporate ballot—all of which are strongly debated elsewhere— are already effective in Japan. Moreover, derivative suits are easily initiated and maintained. Shareholders of Japanese corporations are, therefore, in an arguably stronger position than those in, for example, the United States. Still, notwithstanding these Japanese statutory rights, foreign investors’ criticisms persist. Two questions arise from this debate. First, why are shareholders of Japanese corporations unable to leverage their strong rights to force corporate management to prioritize shareholders’ interests? Alternatively, why are shareholder activists inactive in Japan? Second, if the existing shareholders’ rights are not actually used for activism, are they completely meaningless? Or, do they have alternative effects, whether positive or negative? This article answers these questions by summarizing and categorizing the rights of shareholders of Japanese corporations into two characteristics. First, shareholders of Japanese corporations have strong class-based rights with respect to decision-making on a wide range of matters related to the corporation and ample opportunity to take an initiative. These rights might, in fact, be too strong, inducing managers to insulate themselves by engaging in so-called “cross-shareholding” (kabushiki mochiai) relationship, which in turn likely weakens the rights of other shareholders in practice. The lack of support provided to activist shareholders by other shareholders, especially those in these cross-shareholding relationships, is the primary cause of activist ineffectiveness in Japan. When cross-shareholdings are unwound, however, these shareholder rights function as a latent threat on managers, disciplining them. The keys to ensuring that classbased shareholder rights are meaningful are, thus, distribution of share ownership and restraint on management’s attempt to manipulate this distribution. Unfortunately, it is not easy to unwind already-established crossshareholdings through regulatory intervention. Second, shareholders also possess strong individual rights to raise issues with the corporation, either by asserting a shareholder proposal or filing a derivative suit, neither of which would the corporation disrupt for the interest of other shareholders. These rights, again, might be too strong, incentivizing individuals to take advantage of them in pursuit of personal goals, rather than for the good of the corporation. Yet, whether the use of these individual rights amounts to an abuse hinges on an evaluation of the benefits achieved, namely, the supply of diverse views through shareholder proposals and the deterrence effect of derivative suits. Possible future reforms to Japanese law ought to consider how to strike the right balance of power for shareholders of Japanese corporations

    A Deep Registration Method for Accurate Quantification of Joint Space Narrowing Progression in Rheumatoid Arthritis

    Full text link
    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that results in progressive articular destruction and severe disability. Joint space narrowing (JSN) progression has been regarded as an important indicator for RA progression and has received sustained attention. In the diagnosis and monitoring of RA, radiology plays a crucial role to monitor joint space. A new framework for monitoring joint space by quantifying JSN progression through image registration in radiographic images has been developed. This framework offers the advantage of high accuracy, however, challenges do exist in reducing mismatches and improving reliability. In this work, a deep intra-subject rigid registration network is proposed to automatically quantify JSN progression in the early stage of RA. In our experiments, the mean-square error of Euclidean distance between moving and fixed image is 0.0031, standard deviation is 0.0661 mm, and the mismatching rate is 0.48\%. The proposed method has sub-pixel level accuracy, exceeding manual measurements by far, and is equipped with immune to noise, rotation, and scaling of joints. Moreover, this work provides loss visualization, which can aid radiologists and rheumatologists in assessing quantification reliability, with important implications for possible future clinical applications. As a result, we are optimistic that this proposed work will make a significant contribution to the automatic quantification of JSN progression in RA.Comment: 11 pages, 9 figures, 7 table

    GFAP-Negative Subcutaneous Sacrococcygeal Extraspinal Ependymoma

    Get PDF
    Ependymomas are slowly growing glial tumors derived from the ependymal cells and usually occur in the central nervous system (CNS). Ependymomas rarely occur outside of the CNS and they are called extraspinal ependymomas. In spite of their metastatic potential, extraspinal ependymomas can be misdiagnosed for other benign mass like pilonidal cysts. The diagnosis is confirmed by histopathology and most of the cases are known to show glial fibrillary acidic protein (GFAP), S-100 protein, and keratin (AE1AE3) immunoreactivity. Herein, we present a case of GFAP-negative ependymoma, which presented as asymptomatic subcutaneous tumor of the left buttock and was clinically misdiagnosed as epidermal cyst. Our case indicates that ependymomas cannot be ruled out by lack of GFAP immunoreactivity and an asymptomatic subcutaneous mass could be a malignant tumor like ependymomas, which requires careful examinations

    Molecular dissection and anatomical basis of dystonia : X-linked recessive dystonia-parkinsonism (DYT3)

    Get PDF
    Pathological findings in dystonia have been unclear. X-linked recessive dystonia-parkinsonism (XDP, DYT3), endemic in the Panay island, the Philippines, is characterized by the clinical onset with dystonia followed by parkinsonism. It provides a unique opportunity to explore the anatomical basis of dystonia, because it has discernible pathological changes even at its early phase of dystonia. After extensive searches for the anatomical basis in XDP, we found selective loss of striosomal neurons in the striatum in dystonic patients’ brain. Because striosomal neurons inhibit nigrostriatal dopaminergic neurons via GABAergic innervation, the striosomal lesion could account for dopamine excess in the striatum, which in turn causes a hyperkinetic state or dystonia. We also identified the causative gene as one of the general transcription factor genes, TAF1. XDP has certain similarities to Huntington disease not only in pathological and clinical findings, but also the molecular mechanism, which disturbs expression of genes essential for striatal neurons, such as DRD2. Therapeutic intervention may become possible through pharmacological measures that affect gene expression

    Imaging of radiation during impurity gas puffing in LHD

    Get PDF
    In LHD, several methods of detachment have been attempted, including impurity gaspuffing [1], and the application of an m/n=1/1 magnetic perturbation [2]. LHD is equipped with an imaging bolometer (IRVB) [3] that views the plasma from an upper port. Two scenarios are shown and compared, Ne puffing and N2 puffing. In the case of Ne puffing, radiation becomes more intense near the helical divertor X-point as the radiation increases. In the case of N2 puffing, a double stripe pattern evolves around the upper helical divertor X-point, which appears to be localized near the gas puff inlet. In addition, probe data also indicates that the drop in divertor flux with N2 is localized, while uniform with Ne

    A comprehensive study on impurity behavior in LHD long pulse discharges

    Get PDF
    Impurity behavior is studied in a variety of LHD (Large Helical Device) long pulse discharges, i.e. standard hydrogen plasmas, super dense core plasmas, helium plasmas with ICH (Ion Cyclotron Frequency Heating), multi-species plasmas mixed with H and He. Density scan experiments show a specific density range of impurity accumulation for only hydrogen discharges. Strong suppression of impurity accumulative behavior is observed in high temperature plasmas with high power heating. The main contributions to impurity transport are extracted by a comprehensive study on impurity behavior, i.e. investigating the critical conditions for impurity accumulation and the parameter dependences. It is found that the impurity behavior is determined by three dominant contributions, i.e. neoclassical transport mainly depending on radial electric field, turbulent transport increasing with heating power and impurity screening at high edge collisionality in the ergodic layer. The mapping of impurity behavior on n-T (electron density and temperature) space at the plasma edge shows a clear indication of the domain without impurity accumulation and provides operation scenarios to build up fusion-relevant plasmas

    Body mass index and colorectal cancer risk : A Mendelian randomization study

    Get PDF
    Traditional observational studies have reported a positive association between higher body mass index (BMI) and the risk of colorectal cancer (CRC). However, evidence from other approaches to pursue the causal relationship between BMI and CRC is sparse. A two-sample Mendelian randomization (MR) study was undertaken using 68 single nucleotide polymorphisms (SNPs) from the Japanese genome-wide association study (GWAS) and 654 SNPs from the GWAS catalogue for BMI as sets of instrumental variables. For the analysis of SNP-BMI associations, we undertook a meta-analysis with 36 303 participants in the Japanese Consortium of Genetic Epidemiology studies (J-CGE), comprising normal populations. For the analysis of SNP-CRC associations, we utilized 7636 CRC cases and 37 141 controls from five studies in Japan, and undertook a meta-analysis. Mendelian randomization analysis of inverse-variance weighted method indicated that a one-unit (kg/m2) increase in genetically predicted BMI was associated with an odds ratio of 1.13 (95% confidence interval, 1.06-1.20; P value <.001) for CRC using the set of 68 SNPs, and an odds ratio of 1.07 (1.03-1.11, 0.001) for CRC using the set of 654 SNPs. Sensitivity analyses robustly showed increased odds ratios for CRC for every one-unit increase in genetically predicted BMI. Our MR analyses strongly support the evidence that higher BMI influences the risk of CRC. Although Asians are generally leaner than Europeans and North Americans, avoiding higher BMI seems to be important for the prevention of CRC in Asian populations

    Experimental observations and modelling of radiation asymmetries during N2 seeding in LHD

    Get PDF
    N2 gas has been seeded in the Large Helical Device (LHD) to reduce the divertor heat load through enhanced radiation. Radiation is observed by two imaging bolometers, viewing the same poloidal cross-section from top and bottom ports, at a location which is 36° toroidally removed from the N2 gas puff nozzle located at the bottom of the machine. During N2 seeding, these measurements both confirm that additional radiation from the outboard side is coming exclusively from the top of the cross-section, indicating up/down asymmetry, which is also reproduced by modelling with EMC3-EIRENE using a half torus model. In addition, a toroidally localized, magnetic field direction-dependent radiation enhancement is observed with N2 seeding, but is not reproducible by the model
    • 

    corecore