48 research outputs found

    Triggered Population III star formation: the effect of H2_2 self-shielding

    Full text link
    The multiplicity of metal-free (Population III) stars may influence their feedback efficiency within their host dark matter halos, affecting subsequent metal enrichment and the transition to galaxy formation. Radiative feedback from massive stars can trigger nearby star formation in dense self-shielded clouds. In model radiation self-shielding, the H2_2 column density must be accurately computed. In this study, we compare two local approximations based on the density gradient and Jeans length with a direct integration of column density along rays. After the primary massive star forms, we find that no secondary stars form for both the direct integration and density gradient approaches. The approximate method reduces the computation time by a factor of 2. The Jeans length approximation overestimates the H2_2 column density by a factor of 10, leading to five numerically enhanced self-shielded, star-forming clumps. We conclude that the density gradient approximation is sufficiently accurate for larger volume galaxy simulations, although one must still caution that the approximation cannot fully reproduce the result of direct integration.Comment: 14 pages, 7 figures, 3 tables, accepted to MNRA

    Dust grain growth and the formation of the extremely primitive star SDSS J102915+172927

    Full text link
    Dust grains in low-metallicity star-forming regions may be responsible for the formation of the first low-mass stars. The minimal conditions to activate dust-induced fragmentation require the gas to be pre-enriched above a critical dust-to-gas mass ratio Dcr=[2.6--6.3]x10^-9 with the spread reflecting the dependence on the grain properties. The recently discovered Galactic halo star SDSS J102915+172927 has a stellar mass of 0.8 Msun and a metallicity of Z=4.5x10^-5 Zsun and represents an optimal candidate for the dust-induced low-mass star formation. Indeed, for the two most plausible Population III supernova progenitors, with 20 Msun and 35 Msun, the critical dust-to-gas mass ratio can be overcome provided that at least 0.4 Msun of dust condenses in the ejecta, allowing for moderate destruction by the reverse shock. Here we show that even if dust formation in the first supernovae is less efficient or strong dust destruction does occur, grain growth during the collapse of the parent gas cloud is sufficiently rapid to activate dust cooling and likely fragmentation into low-mass and long-lived stars. Silicates and magnetite grains can experience significant grain growth in the density range 10^9 /cc < nH<10^12 /cc by accreting gas-phase species (SiO, SiO2, and Fe) until their gas-phase abundance drops to zero, reaching condensation efficiencies =1. The corresponding increase in the dust-to-gas mass ratio allows dust-induced cooling and fragmentation to be activated at 10^12 /cc < nH < 10^14 /cc, before the collapsing cloud becomes optically thick to continuum radiation. We show that for all the initial conditions that apply to the parent cloud of SDSS J102915+172927, dust-driven fragmentation is able to account for the formation of the star.Comment: 8 pages, 4 figures, submitted to MNRA

    The origin of the most iron-poor star

    Full text link
    We investigate the origin of carbon-enhanced metal-poor (CEMP) stars starting from the recently discovered [Fe/H]<−7.1\rm [Fe/H]<-7.1 star SMSS J031300 (Keller et al. 2014). We show that the elemental abundances observed on the surface of SMSS J031300 can be well fit by the yields of faint, metal free, supernovae. Using properly calibrated faint supernova explosion models, we study, for the first time, the formation of dust grains in such carbon-rich, iron-poor supernova ejecta. Calculations are performed assuming both unmixed and uniformly mixed ejecta and taking into account the partial destruction by the supernova reverse shock. We find that, due to the paucity of refractory elements beside carbon, amorphous carbon is the only grain species to form, with carbon condensation efficiencies that range between (0.15-0.84), resulting in dust yields in the range (0.025-2.25)M⊙_{\odot}. We follow the collapse and fragmentation of a star forming cloud enriched by the products of these faint supernova explosions and we explore the role played by fine structure line cooling and dust cooling. We show that even if grain growth during the collapse has a minor effect of the dust-to-gas ratio, due to C depletion into CO molecules at an early stage of the collapse, the formation of CEMP low-mass stars, such as SMSS J031300, could be triggered by dust cooling and fragmentation. A comparison between model predictions and observations of a sample of C-normal and C-rich metal-poor stars supports the idea that a single common pathway may be responsible for the formation of the first low-mass stars.Comment: 14 pages, 8 figures, accepted for publication in ApJ. Rephrased sentence in section 5 to avoid text overlap with arXiv:1307.2239 in their model descriptio
    corecore