19 research outputs found

    Sector coupling via hydrogen to lower the cost of energy system decarbonization

    Full text link
    There is growing interest in hydrogen (H2_2) use for long-duration energy storage in a future electric grid dominated by variable renewable energy (VRE) resources. Modelling the role of H2_2 as grid-scale energy storage, often referred as "power-to-gas-to-power (P2G2P)" overlooks the cost-sharing and emission benefits from using the deployed H2_2 production and storage assets to also supply H2_2 for decarbonizing other end-use sectors where direct electrification may be challenged. Here, we develop a generalized modelling framework for co-optimizing energy infrastructure investment and operation across power and transportation sectors and the supply chains of electricity and H2_2, while accounting for spatio-temporal variations in energy demand and supply. Applying this sector-coupling framework to the U.S. Northeast under a range of technology cost and carbon price scenarios, we find a greater value of power-to-H2_2 (P2G) versus P2G2P routes. P2G provides flexible demand response, while the extra cost and efficiency penalties of P2G2P routes make the solution less attractive for grid balancing. The effects of sector-coupling are significant, boosting VRE generation by 12-55% with both increased capacities and reduced curtailments and reducing the total system cost (or levelized costs of energy) by 6-14% under 96% decarbonization scenarios. Both the cost savings and emission reductions from sector coupling increase with H2_2 demand for other end-uses, more than doubling for a 96% decarbonization scenario as H2_2 demand quadraples. Moreover, we found that the deployment of carbon capture and storage is more cost-effective in the H2_2 sector because of the lower cost and higher utilization rate. These findings highlight the importance of using an integrated multi-sector energy system framework with multiple energy vectors in planning energy system decarbonization pathways.Comment: 19 pages, 7 figure

    Round-the-clock power supply and a sustainable economy via synergistic integration of solar thermal power and hydrogen processes

    Get PDF
    We introduce a paradigm-"hydricity"-that involves the coproduction of hydrogen and electricity from solar thermal energy and their judicious use to enable a sustainable economy. We identify and implement synergistic integrations while improving each of the two individual processes. When the proposed integrated process is operated in a standalone, solely power production mode, the resulting solar water power cycle can generate electricity with unprecedented efficiencies of 40-46%. Similarly, in standalone hydrogen mode, pressurized hydrogen is produced at efficiencies approaching similar to 50%. In the coproduction mode, the coproduced hydrogen is stored for uninterrupted solar power production. When sunlight is unavailable, we envision that the stored hydrogen is used in a "turbine"-based hydrogen water power (H2WP) cycle with the calculated hydrogen-to-electricity efficiency of 65-70%, which is comparable to the fuel cell efficiencies. The H2WP cycle uses much of the same equipment as the solar water power cycle, reducing capital outlays. The overall sun-to-electricity efficiency of the hydricity process, averaged over a 24-h cycle, is shown to approach similar to 35%, which is nearly the efficiency attained by using the best multijunction photovoltaic cells along with batteries. In comparison, our proposed process has the following advantages: (i) It stores energy thermochemically with a two-to threefold higher density, (ii) coproduced hydrogen has alternate uses in transportation/chemical/petrochemical industries, and (iii) unlike batteries, the stored energy does not discharge over time and the storage medium does not degrade with repeated uses

    Can vehicle-to-grid facilitate the transition to low carbon energy systems?

    No full text
    Vehicle-to-grid (V2G) allows electric vehicles to provide power and services to the grid. At scale, V2G can bolster renewable energy growth and eliminate storage and displace firm generators traditionally used to balance wind and solar intermittency.</jats:p

    A General Model for Estimating Emissions from Integrated Power Generation and Energy Storage. Case Study: Integration of Solar Photovoltaic Power and Wind Power with Batteries

    No full text
    The penetration of renewable power generation is increasing at an unprecedented pace. While the operating greenhouse gas (GHG) emissions of photovoltaic (PV) and wind power are negligible, their upstream emissions are not. The great challenge with the deployment of renewable power generators is their intermittent and variable nature. Current electric power systems balance these fluctuations primarily using natural gas fired power plants. Alternatively, these dynamics could be handled by the integration of energy storage technologies to store energy during renewable energy availability and discharge when needed. In this paper, we present a model for estimating emissions from integrated power generation and energy storage. The model applies to emissions of all pollutants, including greenhouse gases (GHGs), and to all storage technologies, including pumped hydroelectric and electrochemical storage. As a case study, the model is used to estimate the GHG emissions of electricity from systems that couple photovoltaic and wind generation with lithium-ion batteries (LBs) and vanadium redox flow batteries (VFBs). To facilitate the case study, we conducted a life cycle assessment (LCA) of photovoltaic (PV) power, as well as a synthesis of existing wind power LCAs. The PV LCA is also used to estimate the emissions impact of a common PV practice that has not been comprehensively analyzed by LCA&#8212;solar tracking. The case study of renewables and battery storage indicates that PV and wind power remain much less carbon intensive than fossil-based generation, even when coupled with large amounts of LBs or VFBs. Even the most carbon intensive renewable power analyzed still emits only ~25% of the GHGs of the least carbon intensive mainstream fossil power. Lastly, we find that the pathway to minimize the GHG emissions of power from a coupled system depends upon the generator. Given low-emission generation (&lt;50 gCO2e/kWh), the minimizing pathway is the storage technology with lowest production emissions (VFBs over LBs for our case study). Given high-emission generation (&gt;200 gCO2e/kWh), the minimizing pathway is the storage technology with highest round-trip efficiency (LBs over VFBs)

    Plausible Energy Futures: A Framework for Evaluating Options, Impacts, and National Energy Choices.

    No full text
    The global energy system is undergoing major transformations. The world faces a dual challenge of meeting increasing energy demand while reducing greenhouse gas emissions. This change is characterized by the convergence of power, transportation, industrial, and building sectors, and the surge of multi-sectoral integration. Such transformation of energy systems requires a combination of technology selection and policy choices to ensure providing reliable and clean energy. Understanding the implications of these dynamics is challenging and requires a holistic approach to provide systems level insights. In this working paper, we provide an overview of energy transformation analysis and projection tools and discuss the use of quantitative methods to examine possible future energy pathways. This is done to facilitate achieving decarbonization goals by providing thought leaders and policy makers with a robust framework in which energy choices and decarbonization goals can be made based on lifecycle analyses. We synthetize our findings applicable to modeling tools based on discussions with colleagues in other academic institutions and government labs and provide a summary of a wide range of lifecycle assessment (LCA) and energy modeling tools. Our assessment shows that although there is considerable related research work emerging, there is a lack of readily available or generally accepted quantitative models and tools that consider a broad and robust lifecycle analysis approach for a range of plausible energy futures at regional and national levels. Such a tool is needed to help policy makers, industry, investors, and the financial sector to better understand and make decisions on energy choices and energy transitions, and avoid narrowly framed and advocacy-driven pathways. We at MIT have substantial experience in building and maintaining energy system assessment tools: i) A comprehensive system-level and pathway-level lifecycle assessment model, which is called the Sustainable Energy Systems Analysis Modeling Environment (SESAME). SESAME is a publicly available, open access model with multi-sector representation. ii) The Integrated Global System Modeling framework (IGSM), which combines an economy-wide, multi-sector, multi-region computable general equilibrium (CGE) model (The MIT Economic Projection and Policy Analysis model, EPPA) with a natural systems component (The MIT Earth System model, MESM). The IGSM is an integrated assessment model (IAM). To quantify additional environmental impact categories such as air pollutants and water footprint, we develop an expanded SESAME platform. For an economy-wide scenario analysis, we use the MITEI Energy Choice Program Working Paper 3 modeling results from our EPPA model. The expanded SESAME version will be a publicly available technology options and scenario analysis tool that can use input information from any economy-wide system (or use the default settings that represent our base-case values). The tool will evaluate options, impacts, and national energy choices for exploring the impacts of relevant technological, operational, temporal, and geospatial characteristics of the evolving energy system. It focuses on lifecycle analysis with high technology resolution (linked with the existing MIT energy-economic models) that provides economic information and quantifies lifecycle GHG emissions, as well as impacts related to criteria pollutants and water. Such analysis highlights how effective policy choices and technology selection can reduce such environmental impact

    Sector coupling via hydrogen to lower the cost of energy system decarbonization

    No full text
    There is growing interest in using hydrogen (H2) as a long-duration energy storage resource in a future electric grid dominated by variable renewable energy (VRE) generation. Modeling H2 use exclusively for grid-scale energy storage, often referred to as “power-to-gas-to-power (P2G2P)”, overlooks the cost-sharing and CO2 emission benefits from using the deployed H2 assets to decarbonize other end-use sectors where direct electrification is challenging. Here, we develop a generalized framework for co-optimizing infrastructure investments across the electricity and H2 supply chains, accounting for the spatio-temporal variations in energy demand and supply. We apply this sector-coupling framework to the U.S. Northeast under a range of technology cost and carbon price scenarios and find greater value of power-to-H2 (P2G) vs. P2G2P routes. Specifically, P2G provides grid flexibility to support VRE integration without the round-trip efficiency penalty and additional cost incurred by P2G2P routes. This form of sector coupling leads to: (a) VRE generation increase by 13–56%, and (b) total system cost (and levelized costs of energy) reduction by 7–16% under deep decarbonization scenarios. Both effects increase as H2 demand for other end-uses increases, more than doubling for a 97% decarbonization scenario as H2 demand quadruples. We also find that the grid flexibility enabled by sector coupling makes deployment of carbon capture and storage (CCS) for power generation less cost-effective than its use for low-carbon H2 production. These findings highlight the importance of using an integrated energy system framework with multiple energy vectors in planning cost-effective energy system decarbonization
    corecore