122 research outputs found
The N=1 Supersymmetric Landau Problem and its Supersymmetric Landau Level Projections: the N=1 Supersymmetric Moyal-Voros Superplane
The N=1 supersymmetric invariant Landau problem is constructed and solved. By
considering Landau level projections remaining non trivial under N=1
supersymmetry transformations, the algebraic structures of the N=1
supersymmetric covariant non(anti)commutative superplane analogue of the
ordinary N=0 noncommutative Moyal-Voros plane are identified
EPRL/FK Group Field Theory
The purpose of this short note is to clarify the Group Field Theory vertex
and propagators corresponding to the EPRL/FK spin foam models and to detail the
subtraction of leading divergences of the model.Comment: 20 pages, 2 figure
Functional Renormalisation Group Approach for Tensorial Group Field Theory: a Rank-3 Model
We set up the Functional Renormalisation Group formalism for Tensorial Group Field Theory in full generality. We then apply it to a rank-3 model over U(1) x U(1) x U(1), endowed with a linear kinetic term and nonlocal interactions. The system of FRG equations turns out to be non-autonomous in the RG flow parameter. This feature is explained by the existence of a hidden scale, the radius of the group manifold. We investigate in detail the opposite regimes of large cut-off (UV) and small cut-off (IR) of the FRG equations, where the system becomes autonomous, and we find, in both case, Gaussian and non-Gaussian fixed points. We derive and interpret the critical exponents and flow diagrams associated with these fixed points, and discuss how the UV and IR regimes are matched at finite N. Finally, we discuss the evidence for a phase transition from a symmetric phase to a broken or condensed phase, from an RG perspective, finding that this seems to exist only in the approximate regime of very large radius of the group manifold, as to be expected for systems on compact manifolds
The 1/N expansion of colored tensor models in arbitrary dimension
In this paper we extend the 1/N expansion introduced in [1] to group field
theories in arbitrary dimension and prove that only graphs corresponding to
spheres S^D contribute to the leading order in the large N limit.Comment: 4 pages, 3 figure
Coherent states for continuous spectrum operators with non-normalizable fiducial states
The problem of building coherent states from non-normalizable fiducial states
is considered. We propose a way of constructing such coherent states by
regularizing the divergence of the fiducial state norm. Then, we successfully
apply the formalism to particular cases involving systems with a continuous
spectrum: coherent states for the free particle and for the inverted oscillator
are explicitly provided. Similar ideas can be used for other
systems having non-normalizable fiducial states.Comment: 17 pages, typos corrected, references adde
Ladder operators and coherent states for continuous spectra
The notion of ladder operators is introduced for systems with continuous
spectra. We identify two different kinds of annihilation operators allowing the
definition of coherent states as modified "eigenvectors" of these operators.
Axioms of Gazeau-Klauder are maintained throughout the construction.Comment: Typos correcte
-graded Heisenberg algebras and deformed supersymmetries
The notion of -grading on the enveloping algebra generated by products of
q-deformed Heisenberg algebras is introduced for complex number in the unit
disc. Within this formulation, we consider the extension of the notion of
supersymmetry in the enveloping algebra. We recover the ordinary
grading or Grassmann parity for associative superalgebra, and a modified
version of the usual supersymmetry. As a specific problem, we focus on the
interesting limit for which the Arik and Coon deformation of the
Heisenberg algebra allows to map fermionic modes to bosonic ones in a modified
sense. Different algebraic consequences are discussed.Comment: 2 figure
Bubble divergences: sorting out topology from cell structure
We conclude our analysis of bubble divergences in the flat spinfoam model. In
[arXiv:1008.1476] we showed that the divergence degree of an arbitrary
two-complex Gamma can be evaluated exactly by means of twisted cohomology.
Here, we specialize this result to the case where Gamma is the two-skeleton of
the cell decomposition of a pseudomanifold, and sharpen it with a careful
analysis of the cellular and topological structures involved. Moreover, we
explain in detail how this approach reproduces all the previous powercounting
results for the Boulatov-Ooguri (colored) tensor models, and sheds light on
algebraic-topological aspects of Gurau's 1/N expansion.Comment: 19 page
Coherent states in noncommutative quantum mechanics
Gazeau-Klauder coherent states in noncommutative quantum mechanics are
considered. We find that these states share similar properties to those of
ordinary canonical coherent states in the sense that they saturate the related
position uncertainty relation, obey a Poisson distribution and possess a flat
geometry. Using the natural isometry between the quantum Hilbert space of
Hilbert Schmidt operators and the tensor product of the classical configuration
space and its dual, we reveal the inherent vector feature of these states
- …