24 research outputs found

    The methylotrophic yeast Hansenula polymorpha:its use in fundamental research and as a cell factory

    Get PDF

    The methylotrophic yeast Hansenula polymorpha:its use in fundamental research and as a cell factory

    Get PDF

    Application of a wide-range yeast vector (CoMed™) system to recombinant protein production in dimorphic Arxula adeninivorans, methylotrophic Hansenula polymorpha and other yeasts

    Get PDF
    BACKGROUND: Yeasts provide attractive expression platforms in combining ease of genetic manipulation and fermentation of a microbial organism with the capability to secrete and to modify proteins according to a general eukaryotic scheme. However, early restriction to a single yeast platform can result in costly and time-consuming failures. It is therefore advisable to assess several selected systems in parallel for the capability to produce a particular protein in desired amounts and quality. A suitable vector must contain a targeting sequence, a promoter element and a selection marker that function in all selected organisms. These criteria are fulfilled by a wide-range integrative yeast expression vector (CoMed™) system based on A. adeninivorans- and H. polymorpha-derived elements that can be introduced in a modular way. RESULTS: The vector system and a selection of modular elements for vector design are presented. Individual single vector constructs were used to transform a range of yeast species. Various successful examples are described. A vector with a combination of an rDNA sequence for genomic targeting, the E. coli-derived hph gene for selection and the A. adeninivorans-derived TEF1 promoter for expression control of a GFP (green fluorescent protein) gene was employed in a first example to transform eight different species including Hansenula polymorpha, Arxula adeninivorans and others. In a second example, a vector for the secretion of IL-6 was constructed, now using an A. adeninivorans-derived LEU2 gene for selection of recombinants in a range of auxotrophic hosts. In this example, differences in precursor processing were observed: only in A. adeninivorans processing of a MFα1/IL-6 fusion was performed in a faithful way. CONCLUSION: rDNA targeting provides a tool to co-integrate up to 3 different expression plasmids by a single transformation step. Thus, a versatile system is at hand that allows a comparative assessment of newly introduced metabolic pathways in several organisms or a comparative co-expression of bottleneck genes in cases where production or secretion of a certain product is impaired

    Разработка рекомендательной системы по подбору музыки

    Get PDF
    Разработка рекомендательной системы музыкиMusic recommendation system implementatio

    Atg21p is essential for macropexophagy and microautophagy in the yeast Hansenula polymorpha

    Get PDF
    AbstractATG genes are required for autophagy-related processes that transport proteins/organelles destined for proteolytic degradation to the vacuole. Here, we describe the identification and characterisation of the Hansenula polymorpha ATG21 gene. Its gene product Hp-Atg21p, fused to eGFP, had a dual location in the cytosol and in peri-vacuolar dots. We demonstrate that Hp-Atg21p is essential for two separate modes of peroxisome degradation, namely glucose-induced macropexophagy and nitrogen limitation-induced microautophagy. In atg21 cells subjected to macropexophagy conditions, sequestration of peroxisomes tagged for degradation is initiated but fails to complete

    Process development in Hansenula polymorpha and Arxula adeninivorans, a re-assessment

    Get PDF
    A range of industrial H. polymorpha-based processes exist, most of them for the production of pharmaceuticals. The established industrial processes lean on the use of promoters derived from MOX and FMD, genes of the methanol metabolism pathway. In Hansenula polymorpha these promoters are de-repressed upon depletion of a range of carbon sources like glucose and glycerol instead of being induced by methanol as reported for other methylotrophs. Due to these characteristics screening and fermentation modes have been defined for strains harbouring such expression control elements that lean on a limited supplementation of glycerol or glucose to a culture medium. For fermentation of H. polymorpha a synthetic minimal medium (SYN6) has been developed. No industrial processes have been developed so far based on Arxula adeninivorans and only a limited range of strong promoter elements exists, suitable for heterologous gene expression. SYN6 originally designed for H. polymorpha provided a suitable basis for the initial definition of fermentation conditions for this dimorphic yeast. Characteristics like osmo- and thermotolerance can be addressed for the definition of culture conditions

    Hansenula polymorpha

    No full text
    corecore