2,519 research outputs found

    PAIRWISE VELOCITIES OF GALAXIES IN THE CFA AND SSRS2 REDSHIFT SURVEYS

    Get PDF
    (compressed version) We combine the CfA Redshift Survey (CfA2) and the Southern Sky Redshift Survey (SSRS2) to estimate the pairwise velocity dispersion of galaxies \sig12 on a scale of \sim 1 \hmpc. Both surveys are complete to an apparent magnitude limit B(0)=15.5B(0)=15.5. Our sample includes 12,812 galaxies distributed in a volume 1.8 \times 10^6 \hmpc3. We conclude: 1) The pairwise velocity dispersion of galaxies in the combined CfA2+SSRS2 redshift survey is \sig12=540 \kms \pm 180 \kms. Both the estimate and the variance of \sig12 significantly exceed the canonical values \sig12=340 \pm40 measured by Davis \& Peebles (1983) using CfA1. 2) We derive the uncertainty in \sig12 from the variation among subsamples with volumes on the order of 7×1057 \times 10^5 \hmpc3. This variation is nearly an order of magnitude larger than the formal error, 36 \kms, derived using least-squares fits to the CfA2+SSRS2 correlation function. This variation among samples is consistent with the conclusions of Mo \etal (1993) for a number of smaller surveys and with the analysis of CfA1 by Zurek \etal (1994). 3) When we remove Abell clusters with R1R\ge1 from our sample, the pairwise velocity dispersion of the remaining galaxies drops to 295 \pm 99 \kms. Thus the dominant source of variance in \sig12 is the shot noise contributed by dense virialized systems. 4) The distribution of pairwise velocities is consistent with an isotropic exponential with velocity dispersion independent of scale.Comment: 61 pages uuencoded, compressed postscript in 5 pieces. Also available in one piece at http://www.dao.nrc.ca/DAO/SCIENCE/science.htm

    The Power Spectrum of Galaxies in the Nearby Universe

    Get PDF
    We compute the power spectrum of galaxy density fluctuations in a recently completed redshift survey of optically-selected galaxies in the southern hemisphere (SSRS2). The amplitude and shape of the SSRS2 power spectrum are consistent with results of the Center for Astrophysics redshift survey of the northern hemisphere (CfA2), including the abrupt change of slope on a scale of 30-50Mpc/h; these results are reproducible for independent volumes of space and variations are consistent with the errors estimated from mock surveys. Taken together, the SSRS2 and CfA2 form a complete sample of 14,383 galaxies which covers one-third of the sky. The power spectrum of this larger sample continues to rise on scales up to ~ 200Mpc/h, with weak evidence for flattening on the largest scales. The SSRS2+CfA2 power spectrum and the power spectrum constraints implied by COBE are well-matched by an Omega*h ~ 0.2, Omega+lambda_0=1 CDM model with minimal biasing of optically-selected galaxies.Comment: Accepted for publication in The Astrophysical Journal Letters, Sept. 23, 1994. 10 pages uuencoded compressed postscript, including two figures. JHU-9410200

    Indirect coupling between spins in semiconductor quantum dots

    Full text link
    The optically induced indirect exchange interaction between spins in two quantum dots is investigated theoretically. We present a microscopic formulation of the interaction between the localized spin and the itinerant carriers including the effects of correlation, using a set of canonical transformations. Correlation effects are found to be of comparable magnitude as the direct exchange. We give quantitative results for realistic quantum dot geometries and find the largest couplings for one dimensional systems.Comment: 4 pages, 3 figure

    Hot electrons in low-dimensional phonon systems

    Full text link
    A simple bulk model of electron-phonon coupling in metals has been surprisingly successful in explaining experiments on metal films that actually involve surface- or other low-dimensional phonons. However, by an exact application of this standard model to a semi-infinite substrate with a free surface, making use of the actual vibrational modes of the substrate, we show that such agreement is fortuitous, and that the model actually predicts a low-temperature crossover from the familiar T^5 temperature dependence to a stronger T^6 log T scaling. Comparison with existing experiments suggests a widespread breakdown of the standard model of electron-phonon thermalization in metals

    Chiral persistent currents and magnetic susceptibilities in the parafermion quantum Hall states in the second Landau level with Aharonov-Bohm flux

    Full text link
    Using the effective conformal field theory for the quantum Hall edge states we propose a compact and convenient scheme for the computation of the periods, amplitudes and temperature behavior of the chiral persistent currents and the magnetic susceptibilities in the mesoscopic disk version of the Z_k parafermion quantum Hall states in the second Landau level. Our numerical calculations show that the persistent currents are periodic in the Aharonov-Bohm flux with period exactly one flux quantum and have a diamagnetic nature. In the high-temperature regime their amplitudes decay exponentially with increasing the temperature and the corresponding exponents are universal characteristics of non-Fermi liquids. Our theoretical results for these exponents are in perfect agreement with those extracted from the numerical data and demonstrate that there is in general a non-trivial contribution coming from the neutral sector. We emphasize the crucial role of the non-holomorphic factors, first proposed by Cappelli and Zemba in the context of the conformal field theory partition functions for the quantum Hall states, which ensure the invariance of the annulus partition function under the Laughlin spectral flow.Comment: 14 pages, RevTeX4, 7 figures (eps

    Spin separation in cyclotron motion

    Full text link
    Charged carriers with different spin states are spatially separated in a two-dimensional hole gas. Due to strong spin-orbit interaction holes at the Fermi energy have different momenta for two possible spin states travelling in the same direction and, correspondingly, different cyclotron orbits in a weak magnetic field. Two point contacts, acting as a monochromatic source of ballistic holes and a narrow detector in the magnetic focusing geometry are demonstrated to work as a tunable spin filter.Comment: 4 pages, 2 figure

    Mesoscopic Electron and Phonon Transport through a Curved Wire

    Full text link
    There is great interest in the development of novel nanomachines that use charge, spin, or energy transport, to enable new sensors with unprecedented measurement capabilities. Electrical and thermal transport in these mesoscopic systems typically involves wave propagation through a nanoscale geometry such as a quantum wire. In this paper we present a general theoretical technique to describe wave propagation through a curved wire of uniform cross-section and lying in a plane, but of otherwise arbitrary shape. The method consists of (i) introducing a local orthogonal coordinate system, the arclength and two locally perpendicular coordinate axes, dictated by the shape of the wire; (ii) rewriting the wave equation of interest in this system; (iii) identifying an effective scattering potential caused by the local curvature; and (iv), solving the associated Lippmann-Schwinger equation for the scattering matrix. We carry out this procedure in detail for the scalar Helmholtz equation with both hard-wall and stress-free boundary conditions, appropriate for the mesoscopic transport of electrons and (scalar) phonons. A novel aspect of the phonon case is that the reflection probability always vanishes in the long-wavelength limit, allowing a simple perturbative (Born approximation) treatment at low energies. Our results show that, in contrast to charge transport, curvature only barely suppresses thermal transport, even for sharply bent wires, at least within the two-dimensional scalar phonon model considered. Applications to experiments are also discussed.Comment: 9 pages, 11 figures, RevTe

    Dephasing Effects by Ferromagnetic Boundary on Resistivity in Disordered Metallic Layer

    Full text link
    The resistivity of disordered metallic layer sandwiched by two ferromagnetic layers at low-temperature is investigated theoretically. It is shown that the magnetic field acting at the interface does not affect the classical Boltzmann resistivity but causes a dephasing among electrons in the presence of the spin-orbit interaction, suppressing the anti-localization due to the spin-orbit interaction. The dephasing turns out to be stronger in the case where the magnetization of the two layers is parallel, contributing to a positive magnetoresistance close to a switching field at low temperature.Comment: 11 pages, 3 figures. Title modified in journal versio

    Longitudinal Force on a Moving Potential

    Full text link
    We show a formal result of the longitudinal force acting on a moving potential. The potential can be velocity-dependent, which appears in various interesting physical systems, such as electrons in the presence of a magnetic flux-line, or phonons scattering off a moving vortex. By using the phase-shift analysis, we are able to show the equivalence between the adiabatic perturbation theory and the kinetic theory for the longitudinal force in the dilute gas limit.Comment: RevTeX, 4 pages, revised tex
    corecore