28 research outputs found

    Topological quantization and degeneracy in Josephson-junction arrays

    Full text link
    We consider the conductivity quantization in two-dimensional arrays of mesoscopic Josephson junctions, and examine the associated degeneracy in various regimes of the system. The filling factor of the system may be controlled by the gate voltage as well as the magnetic field, and its appropriate values for quantization is obtained by employing the Jain hierarchy scheme both in the charge description and in the vortex description. The duality between the two descriptions then suggests the possibility that the system undergoes a change in degeneracy while the quantized conductivity remains fixed.Comment: To appear in Phys. Rev.

    Rare and Common Variants Conferring Risk of Tooth Agenesis

    Get PDF
    We present association results from a large genome-wide association study of tooth agenesis (TA) as well as selective TA, including 1,944 subjects with congenitally missing teeth, excluding third molars, and 338,554 controls, all of European ancestry. We also tested the association of previously identified risk variants, for timing of tooth eruption and orofacial clefts, with TA. We report associations between TA and 9 novel risk variants. Five of these variants associate with selective TA, including a variant conferring risk of orofacial clefts. These results contribute to a deeper understanding of the genetic architecture of tooth development and disease. The few variants previously associated with TA were uncovered through candidate gene studies guided by mouse knockouts. Knowing the etiology and clinical features of TA is important for planning oral rehabilitation that often involves an interdisciplinary approach

    Association of SLC32A1 missense variants with genetic epilepsy with febrile seizures plus

    No full text
    Objective To identify the causative gene in a large unsolved family with genetic epilepsy with febrile seizures plus (GEFS+), we sequenced the genomes of family members, and then determined the contribution of the identified gene to the pathogenicity of epilepsies by examining sequencing data from 2,772 additional patients. Methods We performed whole genome sequencing of 3 members of a GEFS+ family. Subsequently, whole exome sequencing data from 1,165 patients with epilepsy from the Epi4K dataset and 1,329 Australian patients with epilepsy from the Epi25 dataset were interrogated. Targeted resequencing was performed on 278 patients with febrile seizures or GEFS+ phenotypes. Variants were validated and familial segregation examined by Sanger sequencing. Results Eight previously unreported missense variants were identified in SLC32A1, coding for the vesicular inhibitory amino acid cotransporter VGAT. Two variants cosegregated with the phenotype in 2 large GEFS+ families containing 8 and 10 affected individuals, respectively. Six further variants were identified in smaller families with GEFS+ or idiopathic generalized epilepsy (IGE). Conclusion Missense variants in SLC32A1 cause GEFS+ and IGE. These variants are predicted to alter γ-aminobutyric acid (GABA) transport into synaptic vesicles, leading to altered neuronal inhibition. Examination of further epilepsy cohorts will determine the full genotype–phenotype spectrum associated with SLC32A1 variants.Sarah E. Heron, Brigid M. Regan, Rebekah V. Harris, Alison E. Gardner, Matthew J. Coleman, Mark F. Bennett ... et al
    corecore