432 research outputs found
Autosomal dominant pseudohypoaldosteronism type 1 with a novel splice site mutation in MR gene
<p>Abstract</p> <p>Background</p> <p>Autosomal dominant pseudohypoaldosteronism type 1 (PHA1) is a rare inherited condition that is characterized by renal resistance to aldosterone as well as salt wasting, hyperkalemia, and metabolic acidosis. Renal PHA1 is caused by mutations of the human mineralcorticoid receptor gene (<it>MR</it>), but it is a matter of debate whether <it>MR </it>mutations cause mineralcorticoid resistance via haploinsufficiency or dominant negative mechanism. It was previously reported that in a case with nonsense mutation the mutant mRNA was absent in lymphocytes because of nonsense mediated mRNA decay (NMD) and therefore postulated that haploinsufficiency alone can give rise to the PHA1 phenotype in patients with truncated mutations.</p> <p>Methods and Results</p> <p>We conducted genomic DNA analysis and mRNA analysis for familial PHA1 patients extracted from lymphocytes and urinary sediments and could detect one novel splice site mutation which leads to exon skipping and frame shift result in premature termination at the transcript level. The mRNA analysis showed evidence of wild type and exon-skipped RT-PCR products.</p> <p>Conclusion</p> <p>mRNA analysis have been rarely conducted for PHA1 because kidney tissues are unavailable for this disease. However, we conducted RT-PCR analysis using mRNA extracted from urinary sediments. We could demonstrate that NMD does not fully function in kidney cells and that haploinsufficiency due to NMD with premature termination is not sufficient to give rise to the PHA1 phenotype at least in this mutation of our patient. Additional studies including mRNA analysis will be needed to identify the exact mechanism of the phenotype of PHA.</p
Toward High-Precision Measures of Large-Scale Structure
I review some results of estimation of the power spectrum of density
fluctuations from galaxy redshift surveys and discuss advances that may be
possible with the Sloan Digital Sky Survey. I then examine the realities of
power spectrum estimation in the presence of Galactic extinction, photometric
errors, galaxy evolution, clustering evolution, and uncertainty about the
background cosmology.Comment: 24 pages, including 11 postscript figures. Uses crckapb.sty (included
in submission). To appear in ``Ringberg Workshop on Large-Scale Structure,''
ed D. Hamilton (Kluwer, Amsterdam), p. 39
Time-trend of melanoma screening practice by primary care physicians: A meta-regression analysis
Objective. To assess whether the proportion of primary care physicians implementing full body skin examination (FBSE) to screen for melanoma changed over time.
Methods. Meta-regression analyses of available data. Data Sources: MEDLINE, ISI, Cochrane Central Register of Controlled Trials.
Results. Fifteen studies surveying 10,336 physicians were included in the analyses. Overall, 15%\u201382% of them reported to perform FBSE to screen for melanoma. The proportion of physicians using FBSE screening tended to decrease by 1.72% per year (P =0.086). Corresponding annual changes in European, North American, and Australian settings were 120.68% (P =0.494), 122.02% (P =0.044), and +2.59% (P =0.010), respectively. Changes were not influenced by national guide-lines.
Conclusions. Considering the increasing incidence of melanoma and other skin malignancies, as well as their relative potential consequences, the FBSE implementation time-trend we retrieved should be considered a worrisome phenomenon
Sun protection and sunbathing practices among at-risk family members of patients with melanoma
<p>Abstract</p> <p>Background</p> <p>Despite the increased level of familial risk, research indicates that family members of patients with melanoma engage in relatively low levels of sun protection and high levels of sun exposure. The goal of this study was to evaluate a broad range of demographic, medical, psychological, knowledge, and social influence correlates of sun protection and sunbathing practices among first-degree relatives (FDRs) of melanoma patients and to determine if correlates of sun protection and sunbathing were unique.</p> <p>Methods</p> <p>We evaluated correlates of sun protection and sunbathing among FDRs of melanoma patients who were at increased disease risk due to low compliance with sun protection and skin surveillance behaviors. Participants (<it>N </it>= 545) completed a phone survey.</p> <p>Results</p> <p>FDRs who reported higher sun protection had a higher education level, lower benefits of sunbathing, greater sunscreen self-efficacy, greater concerns about photo-aging and greater sun protection norms. FDRs who reported higher sunbathing were younger, more likely to be female, endorsed fewer sunscreen barriers, perceived more benefits of sunbathing, had lower image norms for tanness, and endorsed higher sunbathing norms.</p> <p>Conclusion</p> <p>Interventions for family members at risk for melanoma might benefit from improving sun protection self-efficacy, reducing perceived sunbathing benefits, and targeting normative influences to sunbathe.</p
Large Scale Structure of the Universe
Galaxies are not uniformly distributed in space. On large scales the Universe
displays coherent structure, with galaxies residing in groups and clusters on
scales of ~1-3 Mpc/h, which lie at the intersections of long filaments of
galaxies that are >10 Mpc/h in length. Vast regions of relatively empty space,
known as voids, contain very few galaxies and span the volume in between these
structures. This observed large scale structure depends both on cosmological
parameters and on the formation and evolution of galaxies. Using the two-point
correlation function, one can trace the dependence of large scale structure on
galaxy properties such as luminosity, color, stellar mass, and track its
evolution with redshift. Comparison of the observed galaxy clustering
signatures with dark matter simulations allows one to model and understand the
clustering of galaxies and their formation and evolution within their parent
dark matter halos. Clustering measurements can determine the parent dark matter
halo mass of a given galaxy population, connect observed galaxy populations at
different epochs, and constrain cosmological parameters and galaxy evolution
models. This chapter describes the methods used to measure the two-point
correlation function in both redshift and real space, presents the current
results of how the clustering amplitude depends on various galaxy properties,
and discusses quantitative measurements of the structures of voids and
filaments. The interpretation of these results with current theoretical models
is also presented.Comment: Invited contribution to be published in Vol. 8 of book "Planets,
Stars, and Stellar Systems", Springer, series editor T. D. Oswalt, volume
editor W. C. Keel, v2 includes additional references, updated to match
published versio
Analysis of sex and gender-specific research reveals a common increase in publications and marked differences between disciplines
Oertelt-Prigione S, Parol R, Krohn S, Preißner R, Regitz-Zagrosek V. Analysis of sex and gender-specific research reveals a common increase in publications and marked differences between disciplines. BMC Medicine. 2010;8(1): 70.© 2010 Oertelt-Prigione et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the CreativeCommons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Cerebral arterial air embolism in a child after intraosseous infusion
Cerebral arterial air embolism (CAAE) has been reported as a rare complication of medical intervention. There has been one reported case of CAAE after the use of an intraosseous infusion (IO) system. We report on a case of CAAE after tibial IO infusion in a 7-month-old girl during resuscitation
- …