2,493 research outputs found
Development of an efficient procedure for calculating the aerodynamic effects of planform variation
Numerical procedures to compute gradients in aerodynamic loading due to planform shape changes using panel method codes were studied. Two procedures were investigated: one computed the aerodynamic perturbation directly; the other computed the aerodynamic loading on the perturbed planform and on the base planform and then differenced these values to obtain the perturbation in loading. It is indicated that computing the perturbed values directly can not be done satisfactorily without proper aerodynamic representation of the pressure singularity at the leading edge of a thin wing. For the alternative procedure, a technique was developed which saves most of the time-consuming computations from a panel method calculation for the base planform. Using this procedure the perturbed loading can be calculated in about one-tenth the time of that for the base solution
Weak antilocalization in a 2D electron gas with the chiral splitting of the spectrum
Motivated by the recent observation of the metal-insulator transition in
Si-MOSFETs we consider the quantum interference correction to the conductivity
in the presence of the Rashba spin splitting. For a small splitting, a
crossover from the localizing to antilocalizing regime is obtained. The
symplectic correction is revealed in the limit of a large separation between
the chiral branches. The relevance of the chiral splitting for the 2D electron
gas in Si-MOSFETs is discussed.Comment: 7 pages, REVTeX. Mistake corrected; in the limit of a large chiral
splitting the correction to the conductivity does not vanish but approaches
the symplectic valu
Light, stratification and zooplankton as controlling factors for the spring development of phytoplankton in Lake Constance
The patterns of phytoplankton growth and decline during the spring bloom and the following clear-water phase in Lake Constance have been studied on the basis of cell counts with short-term sampling intervals and related to light climate, stratification and zooplankton pressure
Adaptive Density Estimation on the Circle by Nearly-Tight Frames
This work is concerned with the study of asymptotic properties of
nonparametric density estimates in the framework of circular data. The
estimation procedure here applied is based on wavelet thresholding methods: the
wavelets used are the so-called Mexican needlets, which describe a nearly-tight
frame on the circle. We study the asymptotic behaviour of the -risk
function for these estimates, in particular its adaptivity, proving that its
rate of convergence is nearly optimal.Comment: 30 pages, 3 figure
On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening
We assess the contribution of dynamical hardening by direct three-body
scattering interactions to the rate of stellar-mass black hole binary (BHB)
mergers in galactic nuclei. We derive an analytic model for the single-binary
encounter rate in a nucleus with spherical and disk components hosting a
super-massive black hole (SMBH). We determine the total number of encounters
needed to harden a BHB to the point that inspiral due to
gravitational wave emission occurs before the next three-body scattering event.
This is done independently for both the spherical and disk components. Using a
Monte Carlo approach, we refine our calculations for to include
gravitational wave emission between scattering events. For astrophysically
plausible models we find that typically 10.
We find two separate regimes for the efficient dynamical hardening of BHBs:
(1) spherical star clusters with high central densities, low velocity
dispersions and no significant Keplerian component; and (2) migration traps in
disks around SMBHs lacking any significant spherical stellar component in the
vicinity of the migration trap, which is expected due to effective orbital
inclination reduction of any spherical population by the disk. We also find a
weak correlation between the ratio of the second-order velocity moment to
velocity dispersion in galactic nuclei and the rate of BHB mergers, where this
ratio is a proxy for the ratio between the rotation- and dispersion-supported
components. Because disks enforce planar interactions that are efficient in
hardening BHBs, particularly in migration traps, they have high merger rates
that can contribute significantly to the rate of BHB mergers detected by the
advanced Laser Interferometer Gravitational-Wave Observatory.Comment: 13 pages, 9 figures, accepted for publication in MNRA
Splines and Wavelets on Geophysically Relevant Manifolds
Analysis on the unit sphere found many applications in
seismology, weather prediction, astrophysics, signal analysis, crystallography,
computer vision, computerized tomography, neuroscience, and statistics.
In the last two decades, the importance of these and other applications
triggered the development of various tools such as splines and wavelet bases
suitable for the unit spheres , and the
rotation group . Present paper is a summary of some of results of the
author and his collaborators on generalized (average) variational splines and
localized frames (wavelets) on compact Riemannian manifolds. The results are
illustrated by applications to Radon-type transforms on and
.Comment: The final publication is available at http://www.springerlink.co
Discovery of an Unbound Hyper-Velocity Star in the Milky Way Halo
We have discovered a star, SDSS J090745.0+024507, leaving the Galaxy with a
heliocentric radial velocity of +853+-12 km/s, the largest velocity ever
observed in the Milky Way halo. The star is either a hot blue horizontal branch
star or a B9 main sequence star with a heliocentric distance ~55 kpc. Corrected
for the solar reflex motion and to the local standard of rest, the Galactic
rest-frame velocity is +709 km/s.
Because its radial velocity vector points 173.8 deg from the Galactic center,
we suggest that this star is the first example of a hyper-velocity star ejected
from the Galactic center as predicted by Hills and later discussed by Yu &
Tremaine. The star has [Fe/H]~0, consistent with a Galactic center origin, and
a travel time of <80 Myr from the Galactic center, consistent with its stellar
lifetime. If the star is indeed traveling from the Galactic center, it should
have a proper motion of 0.3 mas/yr observable with GAIA. Identifying additional
hyper-velocity stars throughout the halo will constrain the production rate
history of hyper-velocity stars at the Galactic center.Comment: 4 pages, submitted to ApJ Letter
Robust concurrent remote entanglement between two superconducting qubits
Entangling two remote quantum systems which never interact directly is an
essential primitive in quantum information science and forms the basis for the
modular architecture of quantum computing. When protocols to generate these
remote entangled pairs rely on using traveling single photon states as carriers
of quantum information, they can be made robust to photon losses, unlike
schemes that rely on continuous variable states. However, efficiently detecting
single photons is challenging in the domain of superconducting quantum circuits
because of the low energy of microwave quanta. Here, we report the realization
of a robust form of concurrent remote entanglement based on a novel microwave
photon detector implemented in the superconducting circuit quantum
electrodynamics (cQED) platform of quantum information. Remote entangled pairs
with a fidelity of are generated at Hz. Our experiment
opens the way for the implementation of the modular architecture of quantum
computation with superconducting qubits.Comment: Main paper: 7 pages, 4 figures; Appendices: 14 pages, 9 figure
- …