3 research outputs found

    Decrease of the surface pH of maple and the production of nitrate by three pulsed dielectric barrier discharges

    No full text
    In this study, the influence of dielectric barrier discharges at atmospheric pressure on maple sapwood was analyzed. Three common discharge types, a coplanar surface barrier discharge (CSBD), a direct dielectric barrier discharge and a jet discharge/remote plasma, were realized by the same electrodes and power supply. In general, plasma treatments are known to modify various surface properties leading to improved adhesion. For resins such as urea formaldehyde, the curing behavior is dependent on the pH. Therefore, the change of the surface pH value of maple is measured. As the main product of plasma-generated nitrogen oxides, the nitrate concentrations and consequently the nitric acid concentrations of the surfaces were determined. A significant pH reduction from about pH 5.6 to pH 4.6 was reached after a 30 s plasma treatment. An increase in the nitrate concentration over the plasma treatment duration was measured for all three discharges with a maximum of 6.6 mg/L for the CSBD, which corresponds to a concentration of 8.25 mg per m² wooden surface

    Influence of pulse characteristics and power density on stratum corneum permeabilization by dielectric barrier discharge

    No full text
    Background: In recent years, the medical use of cold atmospheric plasma has received much attention. Plasma sources can be suited for widely different indications depending on their physical and chemical characteristics. Being interested in the enhancement of drug transport across the skin by plasma treatment, we evaluated three dielectric barrier discharges (DBDs) as to their potential use in permeabilizing human isolated stratum corneum (SC). Methods: Imaging techniques (electrochemical and redox-chemical imaging, fluorescence microscopy), transepithelial electrical resistance measurements and permeation studies were employed to study the permeabilizing effect of different DBD-treatments on SC. Results: Filamentous μs-pulsed DBDs induced robust pore formation in SC. Increasing the power of the μs-pulsed DBD lead to more pronounced pore formation but might increase the risk of undesired side-effects. Plasma permeabilization was much smaller for the ns-pulsed DBD, which left SC samples largely intact. Conclusions: The comparison of different DBDs provided insight into the mechanism of DBD-induced SC permeabilization. It also illustrated the need to tailor electrical characteristics of a DBD to optimize it for a particular treatment modality. For future applications in drug delivery it would be beneficial to monitor the permeabilization during a plasma treatment. General significance: Our results provide mechanistic insight into the potential of an emerging interdisciplinary technology – plasma medicine – as a prospective tool or treatment option. While it might become a safe and pain-free method to enhance skin permeation of drug substances, this is also a mechanism to keep in mind when tailoring plasma sources for other uses
    corecore