3 research outputs found

    The diffuse interface model for phase-transitional flows

    No full text

    Comparison of the local front reconstruction method with a diffuse interface model for the modeling of droplet collisions

    No full text
    In the present study the authors compare two different simulation models for the modeling of droplet collisions. The simulation models are: the Local Front Reconstruction Method (LFRM) and the Diffuse Interface Model (DIM). Results for fully three-dimensional simulations of droplet collisions at relatively high Weber number simulated with both models are presented and compared. Additionally, a detailed analysis of the dissipation and energy transfer processes of the collision is presented. An overall good agreement is seen in the collision outcomes. Some differences are observed in the interface evolution and the energy transfer/dissipation process during the droplet collision. A significant portion of these differences can be attributed to the differences in the configuration of the initial velocity field. Therefore, for the initial configuration a divergence-free vortical velocity field is introduced to achieve a better match between the simulation models. This improves the agreement of the simulation results

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p < 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p < 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p < 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease
    corecore