11 research outputs found

    Diffuse reflection spectroscopy at the fingertip:design and performance of a compact side-firing probe for tissue discrimination during colorectal cancer surgery

    Get PDF
    Optical technologies are widely used for tissue sensing purposes. However, maneuvering conventional probe designs with flat-tipped fibers in narrow spaces can be challenging, for instance during pelvic colorectal cancer surgery. In this study, a compact side-firing fiber probe was developed for tissue discrimination during colorectal cancer surgery using diffuse reflectance spectroscopy. The optical behavior was compared to flat-tipped fibers using both Monte Carlo simulations and experimental phantom measurements. The tissue classification performance was examined using freshly excised colorectal cancer specimens. Using the developed probe and classification algorithm, an accuracy of 0.92 was achieved for discriminating tumor tissue from healthy tissue

    Toward the use of diffuse reflection spectroscopy for intra-operative tissue discrimination during sarcoma surgery

    Get PDF
    Significance: Accurately distinguishing tumor tissue from normal tissue is crucial to achieve complete resections during soft tissue sarcoma (STS) surgery while preserving critical structures. Incomplete tumor resections are associated with an increased risk of local recurrence and worse patient prognosis. Aim: We evaluate the performance of diffuse reflectance spectroscopy (DRS) to distinguish tumor tissue from healthy tissue in STSs. Approach: DRS spectra were acquired from different tissue types on multiple locations in 20 freshly excised sarcoma specimens. A k -nearest neighbors classification model was trained to predict the tissue types of the measured locations, using binary and multiclass approaches. Results: Tumor tissue could be distinguished from healthy tissue with a classification accuracy of 0.90, sensitivity of 0.88, and specificity of 0.93 when well-differentiated liposarcomas were included. Excluding this subtype, the classification performance increased to an accuracy of 0.93, sensitivity of 0.94, and specificity of 0.93. The developed model showed a consistent performance over different histological subtypes and tumor locations. Conclusions: Automatic tissue discrimination using DRS enables real-time intraoperative guidance, contributing to more accurate STS resections.</p

    Tissue classification of breast cancer by hyperspectral unmixing

    Get PDF
    Please click Additional Files below to see the full abstract

    Layer thickness prediction and tissue classification in two-layered tissue structures using diffuse reflectance spectroscopy

    No full text
    During oncological surgery, it can be challenging to identify the tumor and establish adequate resection margins. This study proposes a new two-layer approach in which diffuse reflectance spectroscopy (DRS) is used to predict the top layer thickness and classify the layers in two-layered phantom and animal tissue. Using wavelet-based and peak-based DRS spectral features, the proposed method could predict the top layer thickness with an accuracy of up to 0.35 mm. In addition, the tissue types of the first and second layers were classified with an accuracy of 0.95 and 0.99. Distinguishing multiple tissue layers during spectral analyses results in a better understanding of more complex tissue structures encountered in surgical practice

    Layer thickness prediction and tissue classification in two-layered tissue structures using diffuse reflectance spectroscopy

    Get PDF
    During oncological surgery, it can be challenging to identify the tumor and establish adequate resection margins. This study proposes a new two-layer approach in which diffuse reflectance spectroscopy (DRS) is used to predict the top layer thickness and classify the layers in two-layered phantom and animal tissue. Using wavelet-based and peak-based DRS spectral features, the proposed method could predict the top layer thickness with an accuracy of up to 0.35 mm. In addition, the tissue types of the first and second layers were classified with an accuracy of 0.95 and 0.99. Distinguishing multiple tissue layers during spectral analyses results in a better understanding of more complex tissue structures encountered in surgical practice.Medical Instruments & Bio-Inspired Technolog

    Tumor Segmentation in Colorectal Ultrasound Images Using an Ensemble Transfer Learning Model: Towards Intra-Operative Margin Assessment

    No full text
    Tumor boundary identification during colorectal cancer surgery can be challenging, and incomplete tumor removal occurs in approximately 10% of the patients operated for advanced rectal cancer. In this paper, a deep learning framework for automatic tumor segmentation in colorectal ultrasound images was developed, to provide real-time guidance on resection margins using intra-operative ultrasound. A colorectal ultrasound dataset was acquired consisting of 179 images from 74 patients, with ground truth tumor annotations based on histopathology results. To address data scarcity, transfer learning techniques were used to optimize models pre-trained on breast ultrasound data for colorectal ultrasound data. A new custom gradient-based loss function (GWDice) was developed, which emphasizes the clinically relevant top margin of the tumor while training the networks. Lastly, ensemble learning methods were applied to combine tumor segmentation predictions of multiple individual models and further improve the overall tumor segmentation performance. Transfer learning outperformed training from scratch, with an average Dice coefficient over all individual networks of 0.78 compared to 0.68. The new GWDice loss function clearly decreased the average tumor margin prediction error from 1.08 mm to 0.92 mm, without compromising the segmentation of the overall tumor contour. Ensemble learning further improved the Dice coefficient to 0.84 and the tumor margin prediction error to 0.67 mm. Using transfer and ensemble learning strategies, good tumor segmentation performance was achieved despite the relatively small dataset. The developed US segmentation model may contribute to more accurate colorectal tumor resections by providing real-time intra-operative feedback on tumor margins

    Tissue Classification of Breast Cancer by Hyperspectral Unmixing

    Get PDF
    (1) Background: Assessing the resection margins during breast-conserving surgery is an important clinical need to minimize the risk of recurrent breast cancer. However, currently there is no technique that can provide real-time feedback to aid surgeons in the margin assessment. Hyperspectral imaging has the potential to overcome this problem. To classify resection margins with this technique, a tissue discrimination model should be developed, which requires a dataset with accurate ground-truth labels. However, establishing such a dataset for resection specimens is difficult. (2) Methods: In this study, we therefore propose a novel approach based on hyperspectral unmixing to determine which pixels within hyperspectral images should be assigned to the ground-truth labels from histopathology. Subsequently, we use this hyperspectral-unmixing-based approach to develop a tissue discrimination model on the presence of tumor tissue within the resection margins of ex vivo breast lumpectomy specimens. (3) Results: In total, 372 measured locations were included on the lumpectomy resection surface of 189 patients. We achieved a sensitivity of 0.94, specificity of 0.85, accuracy of 0.87, Matthew’s correlation coefficient of 0.71, and area under the curve of 0.92. (4) Conclusion: Using this hyperspectral-unmixing-based approach, we demonstrated that the measured locations with hyperspectral imaging on the resection surface of lumpectomy specimens could be classified with excellent performance

    Combining diffuse reflectance spectroscopy and ultrasound imaging for resection margin assessment during colorectal cancer surgery

    No full text
    Establishing adequate resection margins during colorectal cancer surgery is challenging. Currently, in up to 30% of the cases the tumor is not completely removed, which emphasizes the lack of a real-time tissue discrimination tool that can assess resection margins up to multiple millimeters in depth. Therefore, we propose to combine spectral data from diffuse reflectance spectroscopy (DRS) with spatial information from ultrasound (US) imaging to evaluate multi-layered tissue structures. First, measurements with animal tissue were performed to evaluate the feasibility of the concept. The phantoms consisted of muscle and fat layers, with a varying top layer thickness of 0-10 mm. DRS spectra of 250 locations were obtained and corresponding US images were acquired. DRS features were extracted using the wavelet transform. US features were extracted based on the graph theory and first-order gradient. Using a regression analysis and combined DRS and US features, the top layer thickness was estimated with an error of up to 0.48 mm. The tissue types of the first and second layers were classified with accuracies of 0.95 and 0.99 respectively, using a support vector machine model. Medical Instruments & Bio-Inspired Technolog

    Combining diffuse reflectance spectroscopy and ultrasound imaging for resection margin assessment during colorectal cancer surgery

    No full text
    Establishing adequate resection margins during colorectal cancer surgery is challenging. Currently, in up to 30% of the cases the tumor is not completely removed, which emphasizes the lack of a real-time tissue discrimination tool that can assess resection margins up to multiple millimeters in depth. Therefore, we propose to combine spectral data from diffuse reflectance spectroscopy (DRS) with spatial information from ultrasound (US) imaging to evaluate multi-layered tissue structures. First, measurements with animal tissue were performed to evaluate the feasibility of the concept. The phantoms consisted of muscle and fat layers, with a varying top layer thickness of 0-10 mm. DRS spectra of 250 locations were obtained and corresponding US images were acquired. DRS features were extracted using the wavelet transform. US features were extracted based on the graph theory and first-order gradient. Using a regression analysis and combined DRS and US features, the top layer thickness was estimated with an error of up to 0.48 mm. The tissue types of the first and second layers were classified with accuracies of 0.95 and 0.99 respectively, using a support vector machine model. </p

    Toward Intraoperative Margin Assessment Using a Deep Learning-Based Approach for Automatic Tumor Segmentation in Breast Lumpectomy Ultrasound Images

    Get PDF
    There is an unmet clinical need for an accurate, rapid and reliable tool for margin assessment during breast-conserving surgeries. Ultrasound offers the potential for a rapid, reproducible, and non-invasive method to assess margins. However, it is challenged by certain drawbacks, including a low signal-to-noise ratio, artifacts, and the need for experience with the acquirement and interpretation of images. A possible solution might be computer-aided ultrasound evaluation. In this study, we have developed new ensemble approaches for automated breast tumor segmentation. The ensemble approaches to predict positive and close margins (distance from tumor to margin ≤ 2.0 mm) in the ultrasound images were based on 8 pre-trained deep neural networks. The best optimum ensemble approach for segmentation attained a median Dice score of 0.88 on our data set. Furthermore, utilizing the segmentation results we were able to achieve a sensitivity of 96% and a specificity of 76% for predicting a close margin when compared to histology results. The promising results demonstrate the capability of AI-based ultrasound imaging as an intraoperative surgical margin assessment tool during breast-conserving surgery
    corecore