155 research outputs found

    Non-perturbative measurement of low-intensity charged particle beams

    Get PDF
    Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30nA30\,\mathrm{nA}

    A Squid-Based Beam Current Monitor For FAIR

    Get PDF
    A Cryogenic Current Comparator (CCC) wasdeveloped for the upcoming FAIR-Project, providing anon-destructive online monitoring of the beam current inthe nA-range. The CCC was optimized for a lowestpossible noise-limited current resolution together with ahigh system bandwidth. Therefore, the low temperatureproperties of ferromagnetic core materials used in thepick-up coil were investigated and differentSuperconducting Quantum Interference Device (SQUID)-systems were tested.In this contribution we present results of the completedCryogenic Current Comparator for FAIR working in alaboratory environment, regarding the improvements inresolution and bandwidth due to the use of suitableferromagnetic core materials and optimized SQUIDsystemcomponents

    Beam Test with the Cryogenic Current Comparator

    Get PDF

    Measurement of the magnetic moment of the one-neutron halo nucleus 11^{11}Be

    Get PDF
    The magnetic moment of 11^{11}Be was measured by detecting nuclear magnetic resonance signals in a beryllium crystal lattice. The experimental technique applied to a 11^{11}Be+^+ ion beam from a laser ion source includes in-beam optical polarization, implantation into a metallic single crystal and observation of rf resonances in the asymmetric angular distribution of the β\beta-decay (β\beta-NMR). The nuclear magnetic moment μ(11Be)=1.6816(8)μN\mu(^{11}{\rm Be}) = -1.6816(8)\,\mu_N provides a stringent test for theoretical models describing the structure of the 1/2+^+ neutron halo state

    Magneto-optical trapping of bosonic and fermionic neon isotopes and their mixtures: isotope shift of the ^3P_2 to ^3D_3 transition and hyperfine constants of the ^3D_3 state of Ne-21

    Full text link
    We have magneto-optically trapped all three stable neon isotopes, including the rare Ne-21, and all two-isotope combinations. The atoms are prepared in the metastable ^3P_2 state and manipulated via laser interaction on the ^3P_2 to ^3D_3} transition at 640.2nm. These cold (T = 1mK) and environmentally decoupled atom samples present ideal objects for precision measurements and the investigation of interactions between cold and ultracold metastable atoms. In this work, we present accurate measurements of the isotope shift of the ^3P_2 to ^3D_3 transition and the hyperfine interaction constants of the ^3D_3 state of Ne-21. The determined isotope shifts are (1625.9\pm0.15)MHz for Ne-20 to Ne-22, (855.7\pm1.0)MHz for Ne-20 to Ne-21, and (770.3\pm1.0)MHz for Ne-21 to Ne-22. The obtained magnetic dipole and electric quadrupole hyperfine interaction constants are A(^3D_3)= (-142.4\pm0.2)MHz and B(^3D_3)=(-107.7\pm1.1)MHz, respectively. All measurements give a reduction of uncertainty by about one order of magnitude over previous measurements

    Theoretical study of the two-proton halo candidate 17^{17}Ne including contributions from resonant continuum and pairing correlations

    Full text link
    With the relativistic Coulomb wave function boundary condition, the energies, widths and wave functions of the single proton resonant orbitals for 17^{17}Ne are studied by the analytical continuation of the coupling constant (ACCC) approach within the framework of the relativistic mean field (RMF) theory. Pairing correlations and contributions from the single-particle resonant orbitals in the continuum are taken into consideration by the resonant Bardeen-Cooper-Schrieffer (BCS) approach, in which constant pairing strength is used. It can be seen that the fully self-consistent calculations with NL3 and NLSH effective interactions mostly agree with the latest experimental measurements, such as binding energies, matter radii, charge radii and densities. The energy of π\pi2s1/2_{1/2} orbital is slightly higher than that of π1d5/2\pi1d_{5/2} orbital, and the occupation probability of the (π(\pi2s1/2)2_{1/2})^2 orbital is about 20%, which are in accordance with the shell model calculation and three-body model estimation

    Single-neutron transfer from 11Be gs via the (p,d) reaction with a radioactive beam

    Full text link
    The 11Be(p,d)10Be reaction has been performed in inverse kinematics with a radioactive 11Be beam of E/A = 35.3 MeV. Angular distributions for the 0+ ground state, the 2+, 3.37 MeV state and the multiplet of states around 6 MeV in 10Be were measured at angles up to 16 deg CM by detecting the 10Be in a dispersion-matched spectrometer and the coincident deuterons in a silicon array. Distorted wave and coupled-channels calculations have been performed to investigate the amount of 2+ core excitation in 11Be gs. The use of "realistic" 11Be wave functions is emphasised and bound state form factors have been obtained by solving the particle-vibration coupling equations. This calculation gives a dominant 2s component in the 11Be gs wave function with a 16% [2+ x 1d] core excitation admixture. Cross sections calculated with these form factors are in good agreement with the present data. The Separation Energy prescription for the bound state wave function also gives satisfactory fits to the data, but leads to a significantly larger [2 x 1d] component in 11Be gs.Comment: 39 pages, 12 figures. Accepted for publication in Nuclear Physics A. Added minor corrections made in proof to pages 26 and 3

    Analytical expressions for stopping-power ratios relevant for accurate dosimetry in particle therapy

    Full text link
    In particle therapy, knowledge of the stopping-power ratios (STPRs) of the ion beam for air and water is necessary for accurate ionization chamber dosimetry. Earlier work has investigated the STPRs for pristine carbon ion beams, but here we expand the calculations to a range of ions (1 <= z <= 18) as well as spread out Bragg peaks (SOBPs) and provide a theoretical in-depth study with a special focus on the parameter regime relevant for particle therapy. The Monte Carlo transport code SHIELD-HIT is used to calculate complete particle-fluence spectra which are required for determining STPRs according to the recommendations of the International Atomic Energy Agency (IAEA). We confirm that the STPR depends primarily on the current energy of the ions rather than on their charge z or absolute position in the medium. However, STPRs for different sets of stopping-power data for water and air recommended by the International Commission on Radiation Units & Measurements (ICRU) are compared, including also the recently revised data for water, yielding deviations up to 2% in the plateau region. In comparison, the influence of the secondary particle spectra on the STPR is about two orders of magnitude smaller in the whole region up till the practical range. The gained insights enable us to propose an analytic approximation for the STPR for both pristine and SOBPs as a function of penetration depth, which parametrically depend only on the initial energy and the residual range of the ion, respectively.Comment: 21 pages, 5 figures, fixed bug with figures in v

    Recent results on neutron rich tin isotopes by laser spectroscopy

    Get PDF
    Laser spectroscopy measurements have been performed on neutron rich tin isotopes using the COMPLIS experimental setup. The nuclear charge radii of the even-even isotopes from A=108 to 132 are compared to the results of macroscopic and microscopic calculations. The improvements and optimizations needed to perform the isotope shift measurement on 134^{134}Sn are presented
    corecore