179 research outputs found

    Mass and Lifetime Measurements of Exotic Nuclei in Storage Rings

    Get PDF

    Can Hyperfine Excitation explain the Observed Oscillation-Puzzle of Nuclear Orbital Electron Capture of Hydrogen-like Ions?

    Full text link
    Modulated in time orbital electron capture (EC) decays have been observed recently in stored H-like 140^{140}Pr58+^{58+} and 142^{142}Pm60+^{60+} ions. Although, the experimental results are extensively discussed in literature, a firm interpretation has still to be established. Periodic transitions between the hyperfine states could possible lead to the observed effect. Both selected nuclides decay to stable daughter nuclei via allowed Gamow-Teller transitions. Due to the conservation of total angular momentum, the allowed EC decay can only proceed from the hyperfine ground state of parent ions. In this work we argue that periodic transitions to the excited hyperfine state (sterile) in respect to the allowed EC decay ground state cannot explain the observed decay pattern

    Fragmentation of exotic oxygen isotopes

    Get PDF
    Abrasion-ablation models and the empirical EPAX parametrization of projectile fragmentation are described. Their cross section predictions are compared to recent data of the fragmentation of secondary beams of neutron-rich, unstable 19,20,21O isotopes at beam energies near 600 MeV/nucleon as well as data for stable 17,18O beams

    Spectroscopy of eta'-nucleus bound states at GSI-SIS

    Full text link
    The eta' meson mass may be reduced due to partial restoration of chiral symmetry. If this is the case, an eta'-nucleus system may form a nuclear bound state. We plan to carry out a missing-mass spectroscopy with the 12C(p,d) reaction at GSI-SIS. Peak structures corresponding to such a bound state may be observed even in an inclusive measurement, if the decay width is narrow enough.Comment: 4 pages, 2 figures, to appear in the proceedings of MESON2012 (12th International Workshop on Meson Production, Properties and Interaction), Krakow, Polan

    Feasibility Study of Observing eta' Mesic Nuclei with (p,d) Reaction

    Full text link
    A novel method is proposed to measure eta'(958) meson bound states in 11C nuclei by missing mass spectroscopy of the 12C(p,d) reaction near the eta' production threshold. It is shown that peak structures will be observed experimentally in an inclusive measurement in case that the in-medium eta' mass reduction is sufficiently large and that the decay width of eta' mesic states is narrow enough. Such a measurement will be feasible with the intense proton beam supplied by the SIS synchrotron at GSI combined with the good energy resolution of the fragment separator FRS.Comment: 12 pages, 6 figures, accepted for publication in Progress of Theoretical Physic

    First Measurement of the 96^{96}Ru(p,γ\gamma)97^{97}Rh Cross Section for the p-Process with a Storage Ring

    Get PDF
    This work presents a direct measurement of the 96^{96}Ru(p,γp, \gamma)97^{97}Rh cross section via a novel technique using a storage ring, which opens opportunities for reaction measurements on unstable nuclei. A proof-of-principle experiment was performed at the storage ring ESR at GSI in Darmstadt, where circulating 96^{96}Ru ions interacted repeatedly with a hydrogen target. The 96^{96}Ru(p,γp, \gamma)97^{97}Rh cross section between 9 and 11 MeV has been determined using two independent normalization methods. As key ingredients in Hauser-Feshbach calculations, the γ\gamma-ray strength function as well as the level density model can be pinned down with the measured (p,γp, \gamma) cross section. Furthermore, the proton optical potential can be optimized after the uncertainties from the γ\gamma-ray strength function and the level density have been removed. As a result, a constrained 96^{96}Ru(p,γp, \gamma)97^{97}Rh reaction rate over a wide temperature range is recommended for pp-process network calculations.Comment: 10 pages, 7 figs, Accepted for publication at PR

    Separation of atomic and molecular ions by ion mobility with an RF carpet

    Get PDF
    Gas-filled stopping cells are used at accelerator laboratories for the thermalization of high-energy radioactive ion beams. Common challenges of many stopping cells are a high molecular background of extracted ions and limitations of extraction efficiency due to space-charge effects. At the FRS Ion Catcher at GSI, a new technique for removal of ionized molecules prior to their extraction out of the stopping cell has been developed. This technique utilizes the RF carpet for the separation of atomic ions from molecular contaminant ions through their difference in ion mobility. Results from the successful implementation and test during an experiment with a 600~MeV/u 124^{124}Xe primary beam are presented. Suppression of molecular contaminants by three orders of magnitude has been demonstrated. Essentially background-free measurement conditions with less than 1 %1~\% of background events within a mass-to-charge range of 25 u/e have been achieved. The technique can also be used to reduce the space-charge effects at the extraction nozzle and in the downstream beamline, thus ensuring high efficiency of ion transport and highly-accurate measurements under space-charge-free conditions.Comment: 8 pages, 4 figure

    Measurements of proton-induced reactions on ruthenium-96 in the ESR at GSI

    Get PDF
    8th International Conference on Nuclear Physics at Storage Rings Stori11, October 9-14, 2011 Laboratori Nazionale di Frascati, Italy. Storage rings offer the possibility of measuring proton- and alpha-induced reactions in inverse kinematics. The combination of this approachwith a radioactive beamfacility allows, in principle, the determination of the respective cross sections for radioactive isotopes. Such data are highly desired for a better understanding of astrophysical nucleosynthesis processes like the p-process. A pioneering experiment has been performed at the Experimental Storage Ring (ESR) at GSI using a stable 96Ru beam at 9-11 AMeV and a hydrogen target. Monte-Carlo simulations of the experiment were made using the Geant4 code. In these simulations, the experimental setup is described in detail and all reaction channels can be investigated. Based on the Geant4 simulations, a prediction of the shape of different spectral components can be performed. A comparison of simulated predictions with the experimental results shows a good agreement and allows the extraction of the cross section
    corecore