7,748 research outputs found
Mechanical Demands of the Hang Power Clean and Jump Shrug: A Joint-level Perspective
The purpose of this study was to investigate the joint- and load-dependent changes in the mechanical demands of the lower extremity joints during the hang power clean (HPC) and the jump shrug (JS). Fifteen male lacrosse players were recruited from an NCAA DI team, and completed three sets of the HPC and JS at 30%, 50%, and 70% of their HPC 1-Repetition Maximum (1-RM HPC) in a counterbalanced and randomized order. Motion analysis and force plate technology were used to calculate the positive work, propulsive phase duration, and peak concentric power at the hip, knee, and ankle joints. Separate three-way analysis of variances were used to determine the interaction and main effects of joint, load, and lift type on the three dependent variables. The results indicated that the mechanics during the HPC and JS exhibit joint-, load-, and lift-dependent behavior. When averaged across joints, the positive work during both lifts increased progressively with external load, but was greater during the JS at 30% and 50% of 1-RM HPC than during the HPC. The JS was also characterized by greater hip and knee work when averaged across loads. The joint-averaged propulsive phase duration was lower at 30% than at 50% and 70% of 1-RM HPC for both lifts. Furthermore, the load-averaged propulsive phase duration was greater for the hip than the knee and ankle joint. The jointaveraged peak concentric power was the greatest at 70% of 1-RM for the HPC and at 30% to 50% of 1-RM for the JS. In addition, the joint-averaged peak concentric power of the JS was greater than that of the HPC. Furthermore, the load-averaged peak knee and ankle concentric joint powers were greater during the execution of the JS than the HPC. However, the loadaveraged power of all joints differed only during the HPC, but was similar between the hip and knee joints for the JS. Collectively, these results indicate that compared to the HPC the JS is characterized by greater hip and knee positive joint work, and greater knee and ankle peak concentric joint power, especially if performed at 30 and 50% of 1-RM HPC. This study provides important novel information about the mechanical demands of two commonly used exercises and should be considered in the design of resistance training programs that aim to improve the explosiveness of the lower extremity joints
Time-stepping beyond CFL: a locally one-dimensional scheme for acoustic wave propagation
In this abstract, we present a case study in the application of a time-stepping method, unconstrained by the CFL condition, for computational acoustic wave propagation in the context of full waveform inversion. The numerical scheme is a locally one-dimensional (LOD) variant of alternating dimension implicit (ADI) method. The LOD method has a maximum time step that is restricted only by the Nyquist sampling rate. The advantage over traditional explicit time-stepping methods occurs in the presence of high contrast media, low frequencies, and steep, narrow perfectly matched layers (PML). The main technical point of the note, from a numerical analysis perspective, is that the LOD scheme is adapted to the presence of a PML. A complexity study is presented and an application to full waveform inversion is shown.National Science Foundation (U.S.); Alfred P. Sloan Foundatio
Coherent vs incoherent interlayer transport in layered metals
The magnetic-field, temperature, and angular dependence of the interlayer
magnetoresistance of two different quasi-two-dimensional (2D) organic
superconductors is reported. For -(BEDT-TTF)I we find a
well-resolved peak in the angle-dependent magnetoresistance at (field parallel to the layers). This clear-cut proof for the coherent
nature of the interlayer transport is absent for
''-(BEDT-TTF)SFCHCFSO. This and the non-metallic
behavior of the magnetoresistance suggest an incoherent quasiparticle motion
for the latter 2D metal.Comment: 4 pages, 4 figures. Phys. Rev. B, in pres
Thermal activation between Landau levels in the organic superconductor -(BEDT-TTF)SFCHCFSO
We show that Shubnikov-de Haas oscillations in the interlayer resistivity of
the organic superconductor -(BEDT-TTF)SF
CHCFSO become very pronounced in magnetic fields ~60~T.
The conductivity minima exhibit thermally-activated behaviour that can be
explained simply by the presence of a Landau gap, with the
quasi-one-dimensional Fermi surface sheets contributing negligibly to the
conductivity. This observation, together with complete suppression of chemical
potential oscillations, is consistent with an incommensurate nesting
instability of the quasi-one-dimensional sheets.Comment: 6 pages, 4 figure
Treatment of Advanced Emphysema with Emphysematous Lung Sealant (AeriSeal (R))
Background: This report summarizes initial tests of an emphysematous lung synthetic polymer sealant (ELS) designed to reduce lung volume in patients with advanced emphysema. Objectives: The primary study objective was to define a therapeutic strategy to optimize treatment safety and effectiveness. Methods: ELS therapy was administered bronchoscopically to 25 patients with heterogeneous emphysema in an open-label, noncontrolled study at 6 centers in Germany. Treatment was performed initially at 2-4 subsegments. After 12 weeks, patients were eligible for repeat therapy to a total of 6 sites. Safety and efficacy were assessed after 6 months. Responses were evaluated in terms of changes from baseline in lung physiology, functional capacity, and health-related quality of life. Follow-up is available for 21 of 25 patients. Results: Treatment was well tolerated. There were no treatment-related deaths (i.e. within 90 days of treatment), and an acceptable short-and long-term safety profile. Physiological and clinical benefits were observed at 24 weeks. Efficacy responses were better among Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage III patients {[}n = 14; change in residual volume/total lung capacity (Delta RV/TLC) = -7.4 +/- 10.3%; Delta forced expiratory volume in 1 s (Delta FEV(1)) = +15.9 +/- 22.6%; change in forced vital capacity (Delta FVC) = +24.1 +/- 22.7%; change in carbon monoxide lung diffusion capacity (Delta DLCO) = +19.3 +/- 34.8%; change in 6-min walk test (Delta 6MWD) = +28.7 +/- 59.6 m; change in Medical Research Council Dyspnea (Delta MRCD) score = -1.0 +/- 1.04 units; change in St. George's Respiratory Questionnaire (Delta SGRQ) score = -9.9 +/- 15.3 units] than for GOLD stage IV patients (n = 7; Delta RV/TLC = -0.5 +/- 6.4%; Delta FEV 1 = +2.3 +/- 12.3%; Delta FVC = +2.6 +/- 21.1%; Delta DLCO = -2.8 +/- 17.2%; Delta 6MWD = +28.3 +/- 58.4 m; Delta MRCD = 0.3 +/- 0.81 units; Delta SGRQ = -6.7 +/- 7.0 units). Conclusions: ELS therapy shows promise for treating patients with advanced heterogeneous emphysema. Additional studies to assess responses in a larger cohort with a longer follow-up are warranted. Copyright (C) 2011 S. Karger AG, Base
Optimal use of time dependent probability density data to extract potential energy surfaces
A novel algorithm was recently presented to utilize emerging time dependent
probability density data to extract molecular potential energy surfaces. This
paper builds on the previous work and seeks to enhance the capabilities of the
extraction algorithm: An improved method of removing the generally ill-posed
nature of the inverse problem is introduced via an extended Tikhonov
regularization and methods for choosing the optimal regularization parameters
are discussed. Several ways to incorporate multiple data sets are investigated,
including the means to optimally combine data from many experiments exploring
different portions of the potential. Results are presented on the stability of
the inversion procedure, including the optimal combination scheme, under the
influence of data noise. The method is applied to the simulated inversion of a
double well system.Comment: 34 pages, 5 figures, LaTeX with REVTeX and Graphicx-Package;
submitted to PhysRevA; several descriptions and explanations extended in Sec.
I
Impurity Effect on the In-plane Penetration Depth of the Organic Superconductors -(BEDT-TTF) ( = Cu(NCS) and Cu[N(CN)]Br)
We report the in-plane penetration depth of single
crystals -(BEDT-TTF) ( Cu(NCS) and Cu[N(CN)]Br) by
means of the reversible magnetization measurements under the control of
cooling-rate. In = Cu(NCS), as an
extrapolation toward = 0 K does not change by the cooling-rate within the
experimental accuracy, while is slightly reduced. On the other
hand, in = Cu[N(CN)]Br, indicates a distinct
increase by cooling faster. The different behavior of
on cooling-rate between the two salts is quantitatively explained in terms of
the local-clean approximation (London model), considering that the former salt
belongs to the very clean system and the later the moderate clean one. The good
agreement with this model demonstrates that disorders of ethylene-group in
BEDT-TTF introduced by cooling faster increase the
electron(quasiparticle)-scattering, resulting in shorter mean free path.Comment: 8 pages, 9 figure
Interacting Preformed Cooper Pairs in Resonant Fermi Gases
We consider the normal phase of a strongly interacting Fermi gas, which can
have either an equal or an unequal number of atoms in its two accessible spin
states. Due to the unitarity-limited attractive interaction between particles
with different spin, noncondensed Cooper pairs are formed. The starting point
in treating preformed pairs is the Nozi\`{e}res-Schmitt-Rink (NSR) theory,
which approximates the pairs as being noninteracting. Here, we consider the
effects of the interactions between the Cooper pairs in a Wilsonian
renormalization-group scheme. Starting from the exact bosonic action for the
pairs, we calculate the Cooper-pair self-energy by combining the NSR formalism
with the Wilsonian approach. We compare our findings with the recent
experiments by Harikoshi {\it et al.} [Science {\bf 327}, 442 (2010)] and
Nascimb\`{e}ne {\it et al.} [Nature {\bf 463}, 1057 (2010)], and find very good
agreement. We also make predictions for the population-imbalanced case, that
can be tested in experiments.Comment: 10 pages, 6 figures, accepted version for PRA, discussion of the
imbalanced Fermi gas added, new figure and references adde
Recommended from our members
Isotope effect in BEDT-TTF based organic superconductors
The results of the comprehensive isotope effect studies, in which seven different isotopically labeled (involving {sup 13}C, {sup 34}S and {sup 2}H labeling) BEDT-TTF derivatives and isotopically labeled anion [Cu({sup 15}N{sup 13}CS){sub 2}]{sup {minus}} were utilized, are summarized. For the first time, convincing evidence for a genuine BCS-like mass isotope effect in an organic superconductor is revealed in these studies
- …