101 research outputs found
Tight cooperation between Mot1p and NC2Ξ² in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA
TATA-binding protein (TBP) is central to the regulation of eukaryotic transcription initiation. Recruitment of TBP to target genes can be positively regulated by one of two basal transcription factor complexes: SAGA or TFIID. Negative regulation of TBP promoter association can be performed by Mot1p or the NC2 complex. Recent evidence suggests that Mot1p, NC2 and TBP form a DNA-dependent protein complex. Here, we compare the functions of Mot1p and NC2Ξ²during basal and activated transcription using the anchor-away technique for conditional nuclear depletion. Genome-wide expression analysis indicates that both proteins regulate a highly similar set of genes. Upregulated genes were enriched for SAGA occupancy, while downregulated genes preferred TFIID binding. Mot1p and NC2Ξ² depletion during heat shock resulted in failure to downregulate gene expression after initial activation, which was accompanied by increased TBP and RNA pol II promoter occupancies. Depletion of Mot1p or NC2Ξ² displayed preferential synthetic lethality with the TBP-interaction module of SAGA. Our results support the model that Mot1p and NC2Ξ² directly cooperate in vivo to regulate TBP function, and that they are involved in maintaining basal expression levels as well as in resetting gene expression after induction by stress
Easy detection of chromatin binding proteins by the histone association assay
The Histone Association Assay provides an easy approach for detecting proteins that bind chromatin in vivo. This technique is based on a chromatin immunoprecipitation protocol using histone H3-specific antibodies to precipitate bulk chromatin from crosslinked whole cell extracts. Proteins that co-precipitate with chromatin are subsequently detected by conventional SDS-PAGE and Western blot analysis. Unlike techniques that separate chromatin and non-chromatin interacting proteins by centrifugation, this method can be used to delineate whether a protein is chromatin associated regardless of its innate solubility. Moreover, the relative amount of protein bound to DNA can be ascertained under quantitative conditions. Therefore, this technique may be utilized for analyzing the chromatin association of proteins involved in diverse cellular processes
Multi-omics Analysis Reveals Immune Features Associated with Immunotherapy Benefit in Patients with Squamous Cell Lung Cancer from Phase III Lung-MAP S1400I Trial
PURPOSE: Identifying molecular and immune features to guide immune checkpoint inhibitor (ICI)-based regimens remains an unmet clinical need.
EXPERIMENTAL DESIGN: Tissue and longitudinal blood specimens from phase III trial S1400I in patients with metastatic squamous non-small cell carcinoma (SqNSCLC) treated with nivolumab monotherapy (nivo) or nivolumab plus ipilimumab (nivo+ipi) were subjected to multi-omics analyses including multiplex immunofluorescence (mIF), nCounter PanCancer Immune Profiling Panel, whole-exome sequencing, and Olink.
RESULTS: Higher immune scores from immune gene expression profiling or immune cell infiltration by mIF were associated with response to ICIs and improved survival, except regulatory T cells, which were associated with worse overall survival (OS) for patients receiving nivo+ipi. Immune cell density and closer proximity of CD8+GZB+ T cells to malignant cells were associated with superior progression-free survival and OS. The cold immune landscape of NSCLC was associated with a higher level of chromosomal copy-number variation (CNV) burden. Patients with LRP1B-mutant tumors had a shorter survival than patients with LRP1B-wild-type tumors. Olink assays revealed soluble proteins such as LAMP3 increased in responders while IL6 and CXCL13 increased in nonresponders. Upregulation of serum CXCL13, MMP12, CSF-1, and IL8 were associated with worse survival before radiologic progression.
CONCLUSIONS: The frequency, distribution, and clustering of immune cells relative to malignant ones can impact ICI efficacy in patients with SqNSCLC. High CNV burden may contribute to the cold immune microenvironment. Soluble inflammation/immune-related proteins in the blood have the potential to monitor therapeutic benefit from ICI treatment in patients with SqNSCLC
Several Distinct Polycomb Complexes Regulate and Co-Localize on the INK4a Tumor Suppressor Locus
Misexpression of Polycomb repressive complex 1 (PRC1) components in human cells profoundly influences the onset of cellular senescence by modulating transcription of the INK4a tumor suppressor gene. Using tandem affinity purification, we find that CBX7 and CBX8, two Polycomb (Pc) homologs that repress INK4a, both participate in PRC1-like complexes with at least two Posterior sex combs (Psc) proteins, MEL18 and BMI1. Each complex contains a single representative of the Pc and Psc families. In primary human fibroblasts, CBX7, CBX8, MEL18 and BMI1 are present at the INK4a locus and shRNA-mediated knockdown of any one of these components results in de-repression of INK4a and proliferative arrest. Sequential chromatin immunoprecipitation (ChIP) reveals that CBX7 and CBX8 bind simultaneously to the same region of chromatin and knockdown of one of the Pc or Psc proteins results in release of the other, suggesting that the binding of PRC1 complexes is interdependent. Our findings provide the first evidence that a single gene can be regulated by several distinct PRC1 complexes and raise important questions about their configuration and relative functions
Computer-Based Screening of Functional Conformers of Proteins
A long-standing goal in biology is to establish the link between function, structure, and dynamics of proteins. Considering that protein function at the molecular level is understood by the ability of proteins to bind to other molecules, the limited structural data of proteins in association with other bio-molecules represents a major hurdle to understanding protein function at the structural level. Recent reports show that protein function can be linked to protein structure and dynamics through network centrality analysis, suggesting that the structures of proteins bound to natural ligands may be inferred computationally. In the present work, a new method is described to discriminate protein conformations relevant to the specific recognition of a ligand. The method relies on a scoring system that matches critical residues with central residues in different structures of a given protein. Central residues are the most traversed residues with the same frequency in networks derived from protein structures. We tested our method in a set of 24 different proteins and more than 260,000 structures of these in the absence of a ligand or bound to it. To illustrate the usefulness of our method in the study of the structure/dynamics/function relationship of proteins, we analyzed mutants of the yeast TATA-binding protein with impaired DNA binding. Our results indicate that critical residues for an interaction are preferentially found as central residues of protein structures in complex with a ligand. Thus, our scoring system effectively distinguishes protein conformations relevant to the function of interest
Thiolutin is a zinc chelator that inhibits the Rpn11 and other JAMM metalloproteases
Thiolutin is a disulfide-containing antibiotic and anti-angiogenic compound produced by Streptomyces. Its biological targets are not known. We show that reduced thiolutin is a zinc chelator that inhibits the JAB1/MPN/Mov34 (JAMM) domainβcontaining metalloprotease Rpn11, a deubiquitinating enzyme of the 19S proteasome. Thiolutin also inhibits the JAMM metalloproteases Csn5, the deneddylase of the COP9 signalosome; AMSH, which regulates ubiquitin-dependent sorting of cell-surface receptors; and BRCC36, a K63-specific deubiquitinase of the BRCC36-containing isopeptidase complex and the BRCA1βBRCA2-containing complex. We provide evidence that other dithiolopyrrolones also function as inhibitors of JAMM metalloproteases
Analysis of the Initiating Events in HIV-1 Particle Assembly and Genome Packaging
HIV-1 Gag drives a number of events during the genesis of virions and is the only viral protein required for the assembly of virus-like particles in vitro and in cells. Although a reasonable understanding of the processes that accompany the later stages of HIV-1 assembly has accrued, events that occur at the initiation of assembly are less well defined. In this regard, important uncertainties include where in the cell Gag first multimerizes and interacts with the viral RNA, and whether Gag-RNA interaction requires or induces Gag multimerization in a living cell. To address these questions, we developed assays in which protein crosslinking and RNA/protein co-immunoprecipitation were coupled with membrane flotation analyses in transfected or infected cells. We found that interaction between Gag and viral RNA occurred in the cytoplasm and was independent of the ability of Gag to localize to the plasma membrane. However, Gag:RNA binding was stabilized by the C-terminal domain (CTD) of capsid (CA), which participates in Gag-Gag interactions. We also found that Gag was present as monomers and low-order multimers (e.g. dimers) but did not form higher-order multimers in the cytoplasm. Rather, high-order multimers formed only at the plasma membrane and required the presence of a membrane-binding signal, but not a Gag domain (the CA-CTD) that is essential for complete particle assembly. Finally, sequential RNA-immunoprecipitation assays indicated that at least a fraction of Gag molecules can form multimers on viral genomes in the cytoplasm. Taken together, our results suggest that HIV-1 particle assembly is initiated by the interaction between Gag and viral RNA in the cytoplasm and that this initial Gag-RNA encounter involves Gag monomers or low order multimers. These interactions per se do not induce or require high-order Gag multimerization in the cytoplasm. Instead, membrane interactions are necessary for higher order Gag multimerization and subsequent particle assembly in cells
RNA sequencing: from tag-based profiling to resolving complete transcript structure
Technological advances in the sequencing field support in-depth characterization of the transcriptome. Here, we review genome-wide RNA sequencing methods used to investigate specific aspects of gene expression and its regulation, from transcription to RNA processing and translation. We discuss tag-based methods for studying transcription, alternative initiation and polyadenylation events, shotgun methods for detection of alternative splicing, full-length RNA sequencing for the determination of complete transcript structures, and targeted methods for studying the process of transcription and translation. With the ensemble of technologies available, it is now possible to obtain a comprehensive view on transcriptome complexity and the regulation of transcript diversity
- β¦