31 research outputs found

    Genetic management of mixed-stock fisheries "real-time": The case of the largest remaining cod fishery operating in the Atlantic in 2007-2017

    Get PDF
    Fish stocks represent fundamental units in fisheries management, and their identification, especially in mixed-fisheries, represents one of the primary challenges to sustainable harvest. Here, we describe the first “real-time” genetic management program used to manage a mixed-stock fishery of a non-salmonid and commercially significant marine fish, the Atlantic cod (Gadus morhua L). Based upon the analysis of >18 000 fish sampled from the commercial catch in Lofoten (Norway), which represents the largest remaining cod fishery in the Atlantic, we estimated the fraction of North East Arctic cod (NEAC), and Norwegian Coastal cod (NCC), just 24 h post-landing. These estimates, based upon the analysis of the Pantophysin gene, were performed weekly in the winter and spring of each year in the period 2007–2017. The program has successfully permitted the Norwegian Directorate of Fisheries to actively manage the commercial exploitation of the highly abundant NEAC stock, while simultaneously limiting exploitation of the fragile NCC stock, both of which overlap at the spawning grounds. Data from this program have also revealed a distinct temporal increase in the fraction of NEAC on the spawning grounds in this region, which is consistent with the overall increased abundance of this stock as estimated by ICES.publishedVersio

    Geographic variation in gene flow from a genetically distinct migratory ecotype drives population genetic structure of coastal Atlantic cod (Gadus morhua L.)

    Get PDF
    Identifying how physical and biotic factors shape genetic connectivity among populations in time and space is essential to our understanding of the evolutionary trajectory as well as the management of marine species. Atlantic cod is a widespread and commercially important marine species displaying several ecotypes with different life history strategies. Using three sets of SNPs: neutral, informative, and genome-inversion linked, we studied population genetic structure of ~2500 coastal Atlantic cod (CC) from 40 locations along Norway's 2500 km coastline, including nine fjords. We observed: (1) a genetic cline, suggesting a mechanism of isolation by distance, characterized by a declining FST between CC and North East Arctic Cod (NEAC—genetically distinct migratory ecotype) with increasing latitude, (2) that in the north, samples of CC from outer-fjord areas were genetically more similar to NEAC than were samples of CC from their corresponding inner-fjord areas, (3) greater population genetic differentiation among CC sampled from outer-fjord areas along the coast, than among CC sampled from their corresponding inner-fjord areas, (4) genetic differentiation among samples of CC from both within and among fjords. Collectively, these results permit us to draw two main conclusions. First, that differences in the relative presence of the genetically highly distinct, migratory ecotype NEAC, declining from north to south and from outer to inner fjord, plays the major role in driving population genetic structure of the Norwegian CC. Second, that there is limited connectivity between CC from different fjords. These results suggest that the current management units implemented for this species in Norway should be divided into smaller entities. Furthermore, the situation where introgression from one ecotype drives population genetic structure of another, as is the case here, may exist in other species and geographical regions, thus creating additional challenges for sustainable fisheries management.publishedVersio

    Genetic structuring in Atlantic haddock contrasts with current management regimes

    Get PDF
    The advent of novel genetic methods has made it possible to investigate population structure and connectivity in mobile marine fish species: knowledge of which is essential to ensure a sustainable fishery. Haddock (Melanogrammus aeglefinus) is a highly exploited marine teleost distributed along the coast and continental shelf on both sides of the North Atlantic Ocean. However, little is known about its population structure. Here, we present the first study using single-nucleotide polymorphism (SNP) markers to assess the genetic population structure of haddock at multiple geographic scales, from the trans-Atlantic to the local (fjord) level. Genotyping 138 SNP loci in 1329 individuals from 19 locations across the North Atlantic revealed three main genetic clusters, consisting of a Northwest Atlantic cluster, a Northeast Arctic cluster, and a Northeast Atlantic cluster. We also observed a genetically distinct fjord population and a pattern of isolation by distance in the Northeast Atlantic. Our results contrast with the current management regime for this species in the Northeast Atlantic, as we found structure within some management areas. The study adds to the growing recognition of population structuring in marine organisms in general, and fishes in particular, and is of clear relevance for the management of haddock in the Northeast Atlantic.publishedVersionPaid open acces

    The One Ocean Expedition: Science and Sailing for the Ocean We Want

    Get PDF
    Source at https://www.hi.no/hi.The One Ocean Expedition (OOE) was a 20-month long circumnavigation of the globe by the Norwegian sail training vessel Statsraad Lehmkuhl, and a recognised part of the UN decade of Ocean Science for Sustainable Development. The ship was equipped with modern instrumentation to collect high-quality data on ocean physics, chemistry, and biology. Many of the data series were available in near real time from an open repository. The scientific programme was executed along the sailing route of Statsraad Lehmkuhl, with occasional stops for stationary work. The aim of the data collection on board the vessel was to improve knowledge about the state of the world's ocean with regards to the distribution and diversity of organisms, environmental status, climate, and human pressures on the marine ecosystem. Another aim of the expedition was to educate ocean scientists and strengthen ocean literacy. The main types of instrumentation are sensors that measure continuously underway including echosounder, hydrophone, temperature and salinity probes, and various instruments that collect and analyse water sampled from an inlet in the ship's hull, including for environmental DNA and microplastic. Here, we describe the scientific instrumentation onboard Statsraad Lehmkuhl and present preliminary results from the Atlantic part of the expedition. While there are many challenges to using a sail ship for scientific purposes, there are also some key benefits as the vessel is quiet and has a low footprint. Furthermore, the use of a common set of instruments and procedures across the ocean also removes an uncertainty factor when comparing data between ocean areas

    The One Ocean Expedition: Science and Sailing for the Ocean We Want

    Get PDF
    The One Ocean Expedition (OOE) was a 20-month long circumnavigation of the globe by the Norwegian sail training vessel Statsraad Lehmkuhl, and a recognised part of the UN decade of Ocean Science for Sustainable Development. The ship was equipped with modern instrumentation to collect high-quality data on ocean physics, chemistry, and biology. Many of the data series were available in near real time from an open repository. The scientific programme was executed along the sailing route of Statsraad Lehmkuhl, with occasional stops for stationary work. The aim of the data collection on board the vessel was to improve knowledge about the state of the world's ocean with regards to the distribution and diversity of organisms, environmental status, climate, and human pressures on the marine ecosystem. Another aim of the expedition was to educate ocean scientists and strengthen ocean literacy. The main types of instrumentation are sensors that measure continuously underway including echosounder, hydrophone, temperature and salinity probes, and various instruments that collect and analyse water sampled from an inlet in the ship's hull, including for environmental DNA and microplastic. Here, we describe the scientific instrumentation onboard Statsraad Lehmkuhl and present preliminary results from the Atlantic part of the expedition. While there are many challenges to using a sail ship for scientific purposes, there are also some key benefits as the vessel is quiet and has a low footprint. Furthermore, the use of a common set of instruments and procedures across the ocean also removes an uncertainty factor when comparing data between ocean areas.The One Ocean Expedition: Science and Sailing for the Ocean We WantpublishedVersio

    Genetic structuring in Atlantic haddock contrasts with current management regimes

    Get PDF
    The advent of novel genetic methods has made it possible to investigate population structure and connectivity in mobile marine fish species: knowledge of which is essential to ensure a sustainable fishery. Haddock (Melanogrammus aeglefinus) is a highly exploited marine teleost distributed along the coast and continental shelf on both sides of the North Atlantic Ocean. However, little is known about its population structure. Here, we present the first study using single-nucleotide polymorphism (SNP) markers to assess the genetic population structure of haddock at multiple geographic scales, from the trans-Atlantic to the local (fjord) level. Genotyping 138 SNP loci in 1329 individuals from 19 locations across the North Atlantic revealed three main genetic clusters, consisting of a Northwest Atlantic cluster, a Northeast Arctic cluster, and a Northeast Atlantic cluster. We also observed a genetically distinct fjord population and a pattern of isolation by distance in the Northeast Atlantic. Our results contrast with the current management regime for this species in the Northeast Atlantic, as we found structure within some management areas. The study adds to the growing recognition of population structuring in marine organisms in general, and fishes in particular, and is of clear relevance for the management of haddock in the Northeast Atlantic

    Construction of Fair Surfaces Over Irregular Meshes

    Full text link
    corecore