88 research outputs found

    Bone Marrow Stromal Cells: Characterization and Clinical Application

    Full text link
    The bone marrow stroma consists of a heterogeneous population of cells that provide the structural and physiological support for hematopoietic cells. Additionally, the bone marrow stroma contains cells with a stem-cell-like character that allows them to differentiate into bone, cartilage, adipocytes, and hematopoietic supporting tissues. Several experimental approaches have been used to characterize the development and functional nature of these cells in vivo and their differentiating potential in vitro. In vivo, presumptive osteogenic precursors have been identified by morphologic and immunohistochemical methods. In culture, the stromal cells can be separated from hematopoietic cells by their differential adhesion to tissue culture plastic and their prolonged proliferative potential. In cultures generated from single-cell suspensions of marrow, bone marrow stromal cells grow in colonies, each derived from a single precursor cell termed the colony-forming unit-fibroblast. Culture methods have been developed to expand marrow stromal cells derived from human, mouse, and other species. Under appropriate conditions, these cells are capable of forming new bone after in vivo transplantation. Various methods of cultivation and transplantation conditions have been studied and found to have substantial influence on the transplantation outcome The finding that bone marrow stromal cells can be manipulated in vitro and subsequently form bone in vivo provides a powerful new model system for studying the basic biology of bone and for generating models for therapeutic strategies aimed at regenerating skeletal elements.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68070/2/10.1177_10454411990100020401.pd

    An animal model of fibrous dysplasia

    No full text
    [No abstract available

    The use of adult stem cells in rebuilding the human face

    No full text
    BACKGROUND: Stem cells have been isolated from a variety of embryonic and postnatal (adult) tissues, including bone marrow. Bone marrow stromal cells (BMSCs), which are non-blood-forming cells in marrow, contain a subset of skeletal stem cells (SSCs) that are able to regenerate all types of skeletal tissue: bone, cartilage, blood-supportive stromal cells and marrow fat cells. METHODS: Bone marrow suspensions are placed into culture for analysis of their biological character and for expansion of their number. The resulting populations of cells are used in a variety of assays to establish the existence of an adult SSC, and the ability of BMSC populations to regenerate hard tissues in the craniofacial region, in conjunction with appropriate scaffolds. RESULTS: Single-cell analysis established the existence of a true adult SSC in bone marrow. Populations of ex vivo expanded BMSCs (a subset of which are SSCs) are able to regenerate a bone/marrow organ. In conjunction with appropriate scaffolds, these cells can be used to regenerate bone in a variety of applications. CONCLUSIONS: BMSCs have the potential to re-create tissues of the craniofacial region to restore normal structure and function in reconstructing the hard tissues of a face. Ex vivo expanded BMSCs with scaffolds have been used in a limited number of patients to date, but likely will be used more extensively in the near future
    • …
    corecore