24 research outputs found

    How diverse were early animal communities? An example from Ediacara Conservation Park, Flinders Ranges, South Australia

    No full text
    Fossils of the Ediacara biota record the earliest evidence of animal communities and, as such, provide an invaluable glimpse into the abiotic and biotic processes that helped shape the evolution of complex life on Earth. A diverse community of Ediacaran macro-organisms is preserved with high resolution in a fossil bed recently excavated from north Ediacara Conservation Park (NECP) in the Flinders Ranges, South Australia. Many of the commonly described Ediacaran taxa from the Flinders Ranges are represented on the bed surface and include: Parvancorina, Rugoconites, Spriggina, Dickinsonia, Tribrachidium, Kimberella, Charniodiscus and Yorgia, including two new taxa. Numerous additional fossil-bed fragments from the same locality were analysed that preserve a similar suite of taxa and shared sedimentology. On all surfaces, preserved microbial mat appeared complex, both in topography and in texture, and the unique combination of fine grainsize, high diversity and trace fossils provide insights into the palaeoecology of the ancient organisms that lived during the Ediacaran Period some 550 Ma. Several trace fossils are overlapped by body fossils, indicative of successive events, and complex organismal behaviour. The complexity of this fossil surface suggests that the primordial community was relatively mature and possibly at late-stage succession.Felicity J. Coutts, James G. Gehling and Diego C. GarcĂ­a-Bellid

    An Ediacaran opportunist? Characteristics of a juvenile Dickinsonia costata population from Crisp Gorge, South Australia

    No full text
    Despite 70 years of study, Dickinsonia remains one of the Ediacara biota’s most enigmatic taxa with both morphological characters and phylogenetic affinities still debated. A large population of relatively small Dickinsonia costata present on a semi-contiguous surface from the Crisp Gorge fossil locality in the Flinders Ranges (South Australia) provides an opportunity to investigate this taxon in its juvenile form. This population supports earlier findings that suggest D. costata’s early growth was isometric, based on the relationship between measured variables of length and width. The number of body units increases with length, but at a decreasing rate. A correlation between a previously described physical feature, present as a shrinkage rim partially surrounding some specimens and a novel, raised lip in some specimens, suggests that both features may have been the result of a physical contraction in response to the burial process, rather than due to a gradual loss of mass during early diagenesis. A marked protuberance in 15% of the population is also noted in limited specimens within the South Australian Museum collections and appears to be present only in juvenile D. costata. Both the abundance and narrow size range of this population support the notion that Dickinsonia was a hardy opportunist, capable of rapid establishment and growth on relatively immature textured organic-mat substrates.Lily M. Reid, Lily M. Reid, Diego C. García-Bellido and James G. Gehlin

    The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records

    No full text
    Unravelling the timing of the metazoan radiation is crucial for elucidating the macroevolutionary processes associated with the Cambrian explosion. Because estimates of metazoan divergence times derived from molecular clocks range from quite shallow (Ediacaran) to very deep (Mesoproterozoic), it has been difficult to ascertain whether there is concordance or quite dramatic discordance between the genetic and geological fossil records. Here, we show using a range of molecular clock methods that the major pulse of metazoan divergence times was during the Ediacaran, which is consistent with a synoptic reading of the Ediacaran macrobiota. These estimates are robust to changes in priors, and are returned with or without the inclusion of a palaeontologically derived maximal calibration point. Therefore, the two historical records of life both suggest that although the cradle of Metazoa lies in the Cryogenian, and despite the explosion of ecology that occurs in the Cambrian, it is the emergence of bilaterian taxa in the Ediacaran that sets the tempo and mode of macroevolution for the remainder of geological time

    The Cambrian System in the Arrowie Basin, Flinders Ranges, South Australia

    No full text
    The lower to ?middle Cambrian rocks (Terreneuvian, Series 2 and possibly Miaolingian) of the Arrowie Basin are exposed superbly in the Flinders Ranges of South Australia. They comprise two major sedimentary packages: a lower carbonate-rich succession (Hawker Group and correlates) and an upper siliciclastic-dominated succession (Billy Creek Formation, Wirrealpa Limestone and Lake Frome Group). These rocks form one of the most complete lower Cambrian (Terreneuvian and Series 2) successions globally. They contain one of the most diverse known early Cambrian biotas in the world, with trilobites, archaeocyaths, bradoriides, brachiopods, some of the earliest known coralomorphs, small shelly fossils, molluscs, hyoliths, acritarchs and trace fossils. Series divisions, based on ranges of shelly fossils and archaeocyath biostratigraphy are currently being established. Ancient reef structures are prominent in several areas. Syndepositional faulting and diapiric activity affected sedimentation in places. The global significance of the region is enhanced by the presence of tuff horizons at some levels, which provide the opportunity to link the biostratigraphic zones with radiometric dates and carbon isotope curves.J. B. Jago, J. G. Gehling, M. J. Betts, G. A. Brock, C. R. Dalgarno, D. C. GarcĂ­a-Bellido, P. G. Haslett, S. M. Jacquet, P. D. Kruse, N. R. Langsford, T. J. Mount, J. R. Paterso

    A Critical Look at the Ediacaran Trace Fossil Record

    No full text
    corecore