207 research outputs found

    Brain Differences in the Prefrontal Cortex, Amygdala, and Hippocampus in Youth with Congenital Adrenal Hyperplasia

    Get PDF
    Context: Classical Congenital Adrenal Hyperplasia (CAH) due to 21-hydroxylase deficiency results in hormone imbalances present both prenatally and postnatally that may impact the developing brain. Objective: To characterize gray matter morphology in the prefrontal cortex and subregion volumes of the amygdala and hippocampus in youth with CAH, compared to controls. Design: A cross-sectional study of 27 CAH youth (16 female; 12.6 ± 3.4 year) and 35 typically developing, healthy controls (20 female; 13.0 ± 2.8 year) with 3-T magnetic resonance imaging scans. Brain volumes of interest included bilateral prefrontal cortex, and nine amygdala and six hippocampal subregions. Between-subject effects of group (CAH vs control) and sex, and their interaction (group-by-sex) on brain volumes were studied, while controlling for intracranial volume (ICV) and group differences in body mass index and bone age. Results: CAH youth had smaller ICV and increased cerebrospinal fluid volume compared to controls. In fully-adjusted models, CAH youth had smaller bilateral, superior and caudal middle frontal volumes, and smaller left lateral orbito-frontal volumes compared to controls. Medial temporal lobe analyses revealed the left hippocampus was smaller in fully-adjusted models. CAH youth also had significantly smaller lateral nucleus of the amygdala and hippocampal subiculum and CA1 subregions. Conclusions: This study replicates previous findings of smaller medial temporal lobe volumes in CAH patients, and suggests that lateral nucleus of the amygdala, as well as subiculum and subfield CA1 of the hippocampus are particularly affected within the medial temporal lobes in CAH youth

    Brain Differences in the Prefrontal Cortex, Amygdala, and Hippocampus in Youth with Congenital Adrenal Hyperplasia

    Get PDF
    Context: Classical Congenital Adrenal Hyperplasia (CAH) due to 21-hydroxylase deficiency results in hormone imbalances present both prenatally and postnatally that may impact the developing brain. Objective: To characterize gray matter morphology in the prefrontal cortex and subregion volumes of the amygdala and hippocampus in youth with CAH, compared to controls. Design: A cross-sectional study of 27 CAH youth (16 female; 12.6 ± 3.4 year) and 35 typically developing, healthy controls (20 female; 13.0 ± 2.8 year) with 3-T magnetic resonance imaging scans. Brain volumes of interest included bilateral prefrontal cortex, and nine amygdala and six hippocampal subregions. Between-subject effects of group (CAH vs control) and sex, and their interaction (group-by-sex) on brain volumes were studied, while controlling for intracranial volume (ICV) and group differences in body mass index and bone age. Results: CAH youth had smaller ICV and increased cerebrospinal fluid volume compared to controls. In fully-adjusted models, CAH youth had smaller bilateral, superior and caudal middle frontal volumes, and smaller left lateral orbito-frontal volumes compared to controls. Medial temporal lobe analyses revealed the left hippocampus was smaller in fully-adjusted models. CAH youth also had significantly smaller lateral nucleus of the amygdala and hippocampal subiculum and CA1 subregions. Conclusions: This study replicates previous findings of smaller medial temporal lobe volumes in CAH patients, and suggests that lateral nucleus of the amygdala, as well as subiculum and subfield CA1 of the hippocampus are particularly affected within the medial temporal lobes in CAH youth

    Presenting features and long-term effects of growth hormone treatment of children with optic nerve hypoplasia/septo-optic dysplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Optic nerve hypoplasia (ONH) with/or without septo-optic dysplasia (SOD) is a known concomitant of congenital growth hormone deficiency (CGHD).</p> <p>Methods</p> <p>Demographic and longitudinal data from KIGS, the Pfizer International Growth Database, were compared between 395 subjects with ONH/SOD and CGHD and 158 controls with CGHD without midline pathology.</p> <p>Results</p> <p>ONH/SOD subjects had higher birth length/weight, and mid-parental height SDS. At GH start, height, weight, and BMI SDS were higher in the ONH/SOD group. After 1 year of GH, both groups showed similar changes in height SDS, while weight and BMI SDS remained higher in the ONH/SOD group. The initial height responses of the two groups were similar to those predicted using the KIGS-derived prediction model for children with idiopathic GHD. At near-adult height, ONH/SOD and controls had similar height, weight, and BMI SDS.</p> <p>Conclusions</p> <p>Compared to children with CGHD without midline defects, those with ONH/SOD presented with greater height, weight, and BMI SDS. These differences persisted at 1 year of GH therapy, but appeared to be overcome by long-term GH treatment.</p

    Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate

    Get PDF
    During the late stages of the HIV-1 replication cycle, the viral polyprotein Pr55(Gag) is recruited to the plasma membrane (PM), where it binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and directs HIV-1 assembly. We show that Rab27a controls the trafficking of late endosomes carrying phosphatidylinositol 4-kinase type 2 α (PI4KIIα) toward the PM of CD4(+) T cells. Hence, Rab27a promotes high levels of PM phosphatidylinositol 4-phosphate and the localized production of PI(4,5)P2, therefore controlling Pr55(Gag) membrane association. Rab27a also controls PI(4,5)P2 levels at the virus-containing compartments of macrophages. By screening Rab27a effectors, we identified that Slp2a, Slp3, and Slac2b are required for the association of Pr55(Gag) with the PM and that Slp2a cooperates with Rab27a in the recruitment of PI4KIIα to the PM. We conclude that by directing the trafficking of PI4KIIα-positive endosomes toward the PM, Rab27a controls PI(4,5)P2 production and, consequently, HIV-1 replication.Universidad de Buenos Aires and CONICET doctoral fellowships, Agencia Nacional de Pro- moción Científica y Tecnológica (Argentina) grants: (2010-1681, 2012-00353), Creative and Novel Ideas in HIV Research Program, University of Alabama at Birmingham Center for AIDS Research funding grant P30 AI027767-24

    Disruption of PTH Receptor 1 in T Cells Protects against PTH-Induced Bone Loss

    Get PDF
    Hyperparathyroidism in humans and continuous parathyroid hormone (cPTH) treatment in mice cause bone loss by regulating the production of RANKL and OPG by stromal cells (SCs) and osteoblasts (OBs). Recently, it has been reported that T cells are required for cPTH to induce bone loss as the binding of the T cell costimulatory molecule CD40L to SC receptor CD40 augments SC sensitivity to cPTH. However it is unknown whether direct PTH stimulation of T cells is required for cPTH to induce bone loss, and whether T cells contribute to the bone catabolic activity of PTH with mechanisms other than induction of CD40 signaling in SCs.Here we show that silencing of PTH receptor 1 (PPR) in T cells blocks the bone loss and the osteoclastic expansion induced by cPTH, thus demonstrating that PPR signaling in T cells is central for PTH-induced reduction of bone mass. Mechanistic studies revealed that PTH activation of the T cell PPR stimulates T cell production of the osteoclastogenic cytokine tumor necrosis factor alpha (TNF). Attesting to the relevance of this effect, disruption of T cell TNF production prevents PTH-induced bone loss. We also show that a novel mechanism by which TNF mediates PTH induced osteoclast formation is upregulation of CD40 expression in SCs, which increases their RANKL/OPG production ratio.These findings demonstrate that PPR signaling in T cells plays an essential role in PTH induced bone loss by promoting T cell production of TNF. A previously unknown effect of TNF is to increase SC expression of CD40, which in turn increases SC osteoclastogenic activity by upregulating their RANKL/OPG production ratio. PPR-dependent stimulation of TNF production by T cells and the resulting TNF regulation of CD40 signaling in SCs are potential new therapeutic targets for the bone loss of hyperparathyroidism

    The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mesenchymal stem cells are widely used for transplantation into the injured spinal cord in vivo model and for safety, many human clinical trials are continuing to promote improvements of motor and sensory functions after spinal cord injury. Yet the exact mechanism for these improvements remains undefined. Neurogenic bladder following spinal cord injury is the main problem decreasing the quality of life for patients with spinal cord injury, but there are no clear data using stem cell transplantation for the improvement of neurogenic bladder for in vivo studies and the clinical setting.</p> <p>The purpose of this study was to delineate the effect of human mesenchymal stem cell (hMSCs) transplantation on the restoration of neurogenic bladder and impaired hindlimb function after spinal cord contusion of rats and the relationship between neurotrophic factors such as brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and bladder and hindlimb functions.</p> <p>Results</p> <p>Modified moderate contusion injury were performed on the thoracic spinal cord of Sprague-Dawley rats using MASCIS impactor and hMSCs, human fibroblasts or phosphate-buffered saline were transplanted into injured spinal cord 9 days after injury for hMSC and two control groups respectively. Ladder test showed more rapid restoration of hindlimb function in hMSC group than in control group, but Basso, Beattie, and Bresnahan score and coupling score were not different significantly among hMSC and two control groups. Neurogenic bladder was not improved in either group. ED1 positive macrophages were significantly reduced in hMSC group than in two control groups, but ELISA and RT-PCR studies revealed BDNF and NT-3 levels in spinal cord and bladder were not different among hMSC and two control groups regardless the experimental duration.</p> <p>Conclusion</p> <p>hMSC transplantation was effective in reducing inflammatory reaction after spinal cord contusion of rats but not sufficient to recover locomotor and bladder dysfunction. BDNF and NT-3 levels in the spinal cord and bladder were not increased 28 and 56 days after hMSC transplantation.</p
    corecore