329 research outputs found
Distributed Maximum Likelihood Sensor Network Localization
We propose a class of convex relaxations to solve the sensor network
localization problem, based on a maximum likelihood (ML) formulation. This
class, as well as the tightness of the relaxations, depends on the noise
probability density function (PDF) of the collected measurements. We derive a
computational efficient edge-based version of this ML convex relaxation class
and we design a distributed algorithm that enables the sensor nodes to solve
these edge-based convex programs locally by communicating only with their close
neighbors. This algorithm relies on the alternating direction method of
multipliers (ADMM), it converges to the centralized solution, it can run
asynchronously, and it is computation error-resilient. Finally, we compare our
proposed distributed scheme with other available methods, both analytically and
numerically, and we argue the added value of ADMM, especially for large-scale
networks
Compressed Sensing for Block-Sparse Smooth Signals
We present reconstruction algorithms for smooth signals with block sparsity
from their compressed measurements. We tackle the issue of varying group size
via group-sparse least absolute shrinkage selection operator (LASSO) as well as
via latent group LASSO regularizations. We achieve smoothness in the signal via
fusion. We develop low-complexity solvers for our proposed formulations through
the alternating direction method of multipliers
Consistent Sensor, Relay, and Link Selection in Wireless Sensor Networks
In wireless sensor networks, where energy is scarce, it is inefficient to
have all nodes active because they consume a non-negligible amount of battery.
In this paper we consider the problem of jointly selecting sensors, relays and
links in a wireless sensor network where the active sensors need to communicate
their measurements to one or multiple access points. Information messages are
routed stochastically in order to capture the inherent reliability of the
broadcast links via multiple hops, where the nodes may be acting as sensors or
as relays. We aim at finding optimal sparse solutions where both, the
consistency between the selected subset of sensors, relays and links, and the
graph connectivity in the selected subnetwork are guaranteed. Furthermore,
active nodes should ensure a network performance in a parameter estimation
scenario. Two problems are studied: sensor and link selection; and sensor,
relay and link selection. To solve such problems, we present tractable
optimization formulations and propose two algorithms that satisfy the previous
network requirements. We also explore an extension scenario: only link
selection. Simulation results show the performance of the algorithms and
illustrate how they provide a sparse solution, which not only saves energy but
also guarantees the network requirements.Comment: 27 pages, 17 figure
- …