77 research outputs found
Systemic Inflammatory Effects of Traumatic Brain Injury, Femur Fracture, and Shock: An Experimental Murine Polytrauma Model
Objective. Despite broad research in neurotrauma and shock, little is known on systemic inflammatory effects of the clinically most relevant combined polytrauma. Experimental investigation in an animal model may provide relevant insight for therapeutic strategies. We describe the effects of a combined injury with respect to lymphocyte population and cytokine activation.
Methods. 45 male C57BL/6J mice (mean weight 27 g) were anesthetized with ketamine/xylazine. Animals were subjected to a weight drop closed traumatic brain injury (WD-TBI), a femoral fracture and hemorrhagic shock (FX-SH). Animals were subdivided into WD-TBI, FX-SH and combined trauma (CO-TX) groups. Subjects were sacrificed at 96 h. Blood was analysed for cytokines and by flow cytometry for lymphocyte populations.
Results. Mortality was 8%, 13% and 47% for FX-SH, WD-TBI and CO-TX groups (P < 0.05). TNFα (11/13/139 for FX-SH/WD-TBI/CO-TX; P < 0.05), CCL2 (78/96/227; P < 0.05) and IL-6 (16/48/281; P = 0.05) showed significant increases in the CO-TX group. Lymphocyte populations results for FX-SH, WD-TBI and CO-TX were: CD-4 (31/21/22; P = n.s.), CD-8 (7/28/34, P < 0.05), CD-4-CD-8 (11/12/18; P = n.s.), CD-56 (36/7/8; P < 0.05).
Conclusion. This study shows that a combination of closed TBI and femur-fracture/ shock results in an increase of the humoral inflammation. More attention to combined injury models in inflammation research is indicated
Reliability and validity of neurobehavioral function on the Psychology Experimental Building Language test battery in young adults
Background. The Psychology Experiment Building Language (PEBL) software consists of over one-hundred computerized tests based on classic and novel cognitive neuropsychology and behavioral neurology measures. Although the PEBL tests are becoming more widely utilized, there is currently very limited information about the psychometric properties of these measures.
Methods. Study I examined inter-relationships among nine PEBL tests including indices of motor-function (Pursuit Rotor and Dexterity), attention (Test of Attentional Vigilance and Time-Wall), working memory (Digit Span Forward), and executive-function (PEBL Trail Making Test, Berg/Wisconsin Card Sorting Test, Iowa Gambling Test, and Mental Rotation) in a normative sample (N = 189, ages 18–22). Study II evaluated test–retest reliability with a two-week interest interval between administrations in a separate sample (N = 79, ages 18–22).
Results. Moderate intra-test, but low inter-test, correlations were observed and ceiling/floor effects were uncommon. Sex differences were identified on the Pursuit Rotor (Cohen’s d = 0.89) and Mental Rotation (d = 0.31) tests. The correlation between the test and retest was high for tests of motor learning (Pursuit Rotor time on target r = .86) and attention (Test of Attentional Vigilance response time r = .79), intermediate for memory (digit span r = .63) but lower for the executive function indices (Wisconsin/Berg Card Sorting Test perseverative errors = .45, Tower of London moves = .15). Significant practice effects were identified on several indices of executive function.
Conclusions. These results are broadly supportive of the reliability and validity of individual PEBL tests in this sample. These findings indicate that the freely downloadable, open-source PEBL battery (http://pebl.sourceforge.net) is a versatile research tool to study individual differences in neurocognitive performance
Coupled calcium and inorganic carbon uptake suggested by magnesium and sulfur incorporation in foraminiferal calcite
Shell chemistry of foraminiferal carbonate proves to be
useful in reconstructing past ocean conditions. A new addition to the proxy
toolbox is the ratio of sulfur (S) to calcium (Ca) in foraminiferal shells,
reflecting the ratio of SO42- to CO32- in seawater. When
comparing species, the amount of SO42- incorporated, and therefore
the S∕Ca of the shell, increases with increasing magnesium (Mg) content. The
uptake of SO42- in foraminiferal calcite is likely connected to
carbon uptake, while the incorporation of Mg is more likely related to Ca
uptake since this element substitutes for Ca in the crystal lattice. The
relation between S and Mg incorporation in foraminiferal calcite therefore
offers the opportunity to investigate the timing of processes involved in Ca
and carbon uptake. To understand how foraminiferal S∕Ca is related to Mg∕Ca,
we analyzed the concentration and within-shell distribution of S∕Ca of three
benthic species with different shell chemistry: Ammonia tepida, Bulimina marginata and Amphistegina lessonii. Furthermore, we
investigated the link between Mg∕Ca and S∕Ca across species and the
potential influence of temperature on foraminiferal S∕Ca. We observed that
S∕Ca is positively correlated with Mg∕Ca on a microscale within specimens, as
well as between and within species. In contrast, when shell Mg∕Ca increases
with temperature, foraminiferal S∕Ca values remain similar. We evaluate our
findings in the light of previously proposed biomineralization models and
abiological processes involved during calcite precipitation. Although all
kinds of processes, including crystal lattice distortion and element
speciation at the site of calcification, may contribute to changes in either
the amount of S or Mg that is ultimately incorporated in foraminiferal
calcite, these processes do not explain the covariation between Mg∕Ca and
S∕Ca values within specimens and between species. We observe that groups of
foraminifera with different calcification pathways, e.g., hyaline versus
porcelaneous species, show characteristic values for S∕Ca and Mg∕Ca, which
might be linked to a different calcium and carbon uptake mechanism in
porcelaneous and hyaline foraminifera. Whereas Mg incorporation might be
controlled by Ca dilution at the site of calcification due to Ca pumping, S
is linked to carbonate ion concentration via proton pumping. The fact that
we observe a covariation of S and Mg within specimens and between species
suggests that proton pumping and Ca pumping are intrinsically coupled across
multiple scales.</p
Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry
The dielectric properties of alpha-MgH2 are investigated in the photon energy
range between 1 and 6.5 eV. For this purpose, a novel sample configuration and
experimental setup are developed that allow both optical transmission and
ellipsometric measurements of a transparent thin film in equilibrium with
hydrogen. We show that alpha-MgH2 is a transparent, colour neutral insulator
with a band gap of 5.6 +/- 0.1 eV. It has an intrinsic transparency of about
80% over the whole visible spectrum. The dielectric function found in this work
confirms very recent band structure calculations using the GW approximation by
Alford and Chou [J.A. Alford and M.Y. Chou (unpublished)]. As Pd is used as a
cap layer we report also the optical properties of PdHx thin films.Comment: REVTeX4, 15 pages, 12 figures, 5 table
Microfluidic device for robust generation of two-component liquid-in-air slugs with individually controlled composition
Using liquid slugs as microreactors and microvessels enable precise control over the conditions of their contents on short-time scales for a wide variety of applications. Particularly for screening applications, there is a need for control of slug parameters such as size and composition. We describe a new microfluidic approach for creating slugs in air, each comprising a size and composition that can be selected individually for each slug. Two-component slugs are formed by first metering the desired volume of each reagent, merging the two volumes into an end-to-end slug, and propelling the slug to induce mixing. Volume control is achieved by a novel mechanism: two closed chambers on the chip are initially filled with air, and a valve in each is briefly opened to admit one of the reagents. The pressure of each reagent can be individually selected and determines the amount of air compression, and thus the amount of liquid that is admitted into each chamber. We describe the theory of operation, characterize the slug generation chip, and demonstrate the creation of slugs of different compositions. The use of microvalves in this approach enables robust operation with different liquids, and also enables one to work with extremely small samples, even down to a few slug volumes. The latter is important for applications involving precious reagents such as optimizing the reaction conditions for radiolabeling biological molecules as tracers for positron emission tomography
Deterrence in Cyberspace: An Interdisciplinary Review of the Empirical Literature
The popularity of the deterrence perspective across multiple scientific disciplines has sparked a lively debate regarding its relevance in influencing both offenders and targets in cyberspace. Unfortunately, due to the invisible borders between academic disciplines, most of the published literature on deterrence in cyberspace is confined within unique scientific disciplines. This chapter therefore provides an interdisciplinary review of the issue of deterrence in cyberspace. It begins with a short overview of the deterrence perspective, presenting the ongoing debates concerning the relevance of deterrence pillars in influencing cybercriminals’ and cyberattackers’ operations in cyberspace. It then reviews the existing scientific evidence assessing various aspects of deterrence in the context of several disciplines: criminology, law, information systems, and political science. This chapter ends with a few policy implications and proposed directions for future interdisciplinary academic research
Determination of nutrient salts by automatic methods both in seawater and brackish water: the phosphate blank
9 páginas, 2 tablas, 2 figurasThe main inconvenience in determining nutrients in seawater by automatic methods is simply solved:
the preparation of a suitable blank which corrects the effect of the refractive index change on the recorded
signal. Two procedures are proposed, one physical (a simple equation to estimate the effect) and the other
chemical (removal of the dissolved phosphorus with ferric hydroxide).Support for this work came from CICYT (MAR88-0245 project) and
Conselleria de Pesca de la Xunta de GaliciaPeer reviewe
Element banding and organic linings within chamber walls of two benthic foraminifera
Trace and minor elements incorporated in foraminiferal shells are among the most used proxies for reconstructing past environmental conditions. A prominent issue concerning these proxies is that the inter-specimen variability in element composition is often considerably larger than the variability associated with the environmental conditions for which the proxy is used. Within a shell of an individual specimen the trace and minor elements are distributed in the form of bands of higher and lower concentrations. It has been hypothesized that differences in specimen-specific element banding patterns cause the inter-specimen and inter-species variability observed in average element composition, thereby reducing the reliability of proxies. To test this hypothesis, we compared spatial distributions of Mg, Na, Sr, K, S, P and N within chamber walls of two benthic foraminiferal species (Amphistegina lessonii and Ammonia tepida) with largely different average Mg content. For both species the selected specimens were grown at different temperatures and salinities to additionally assess how these parameters influence the element concentrations within the shell wall. Our results show that Mg, Na, Sr and K are co-located within shells, and occur in bands that coincide with organic linings but extend further into the calcite lamella. Changes in temperature or salinity modulate the element-banding pattern as a whole, with peak and trough heights co-varying rather than independently affected by these two environmental parameters. This means that independent changes in peak or trough height do not explain differences in average El/Ca between specimens. These results are used to evaluate and synthesize models of underlying mechanisms responsible for trace and minor element partitioning during calcification in foraminifera
- …