104 research outputs found
Towards a matroid-minor structure theory
This paper surveys recent work that is aimed at generalising the results and techniques of the Graph Minors Project of Robertson and Seymour to matroids
Excluding a group-labelled graph
This paper contains a first step towards extending the
Graph Minors Project of Robertson and Seymour to group-labelled graphs. For a finite abelian group Γ and Γ-labelled graph G, we describe the class of Γ-labelled graphs that do not contain a minor isomorphic to G
Tangles, tree-decompositions, and grids in matroids
A tangle in a matroid is an obstruction to small branch-width. In particular, the maximum order of a tangle is equal to the branch-width. We prove that: (i) there is a tree-decomposition of a matroid that “displays” all of the maximal tangles, and (ii) when M is representable over a finite field, each tangle of sufficiently large order “dominates” a large grid-minor. This extends results of Robertson and Seymour concerning Graph Minors
Branch-width and well-quasi-ordering in matroids and graphs
AbstractWe prove that a class of matroids representable over a fixed finite field and with bounded branch-width is well-quasi-ordered under taking minors. With some extra work, the result implies Robertson and Seymour's result that graphs with bounded tree-width (or equivalently, bounded branch-width) are well-quasi-ordered under taking minors. We will not only derive their result from our result on matroids, but we will also use the main tools for a direct proof that graphs with bounded branch-width are well-quasi-ordered under taking minors. This proof also provides a model for the proof of the result on matroids, with all specific matroid technicalities stripped off
Quasi-graphic matroids
Frame matroids and lifted-graphic matroids are two interesting generalizations of graphic matroids. Here we introduce a new generalization, quasi-graphic matroids, that unifies these two existing classes. Unlike frame matroids and lifted-graphic matroids, it is easy to certify that a matroid is quasi-graphic. The main result of the paper is that every 3-connected representable quasi-graphic matroid is either a lifted-graphic matroid or a rame matroid
On inequivalent representations of matroids over non-prime fields
For each finite field of prime order there is a constant such that every 4-connected matroid has at most inequivalent representations over . We had hoped that this would extend to all finite fields, however, it was not to be. The -mace is the matroid obtained by adding a point freely to . For all , the -mace is 4-connected and has at least representations over any field of non-prime order . More generally, for , the -mace is vertically -connected and has at least inequivalent representations over any finite field of non-prime order
Generalized Inpainting Method for Hyperspectral Image Acquisition
A recently designed hyperspectral imaging device enables multiplexed
acquisition of an entire data volume in a single snapshot thanks to
monolithically-integrated spectral filters. Such an agile imaging technique
comes at the cost of a reduced spatial resolution and the need for a
demosaicing procedure on its interleaved data. In this work, we address both
issues and propose an approach inspired by recent developments in compressed
sensing and analysis sparse models. We formulate our superresolution and
demosaicing task as a 3-D generalized inpainting problem. Interestingly, the
target spatial resolution can be adjusted for mitigating the compression level
of our sensing. The reconstruction procedure uses a fast greedy method called
Pseudo-inverse IHT. We also show on simulations that a random arrangement of
the spectral filters on the sensor is preferable to regular mosaic layout as it
improves the quality of the reconstruction. The efficiency of our technique is
demonstrated through numerical experiments on both synthetic and real data as
acquired by the snapshot imager.Comment: Keywords: Hyperspectral, inpainting, iterative hard thresholding,
sparse models, CMOS, Fabry-P\'ero
- …