7 research outputs found

    Simultaneous quantification of cyclophosphamide and its active metabolite 4-hydroxycyclophosphamide in human plasma by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS)

    No full text
    Cyclophosphamide is a cytotoxic prodrug with a very narrow therapeutic index. To study the clinical pharmacology of cyclophosphamide in a large cohort of patients a previously published method for the simultaneous quantitative determination of cyclophosphamide and 4-hydroxycyclophosphamide in human plasma using liquid chromatography tandem mass spectrometry (LC-MS/MS) was optimized. Addition of an isotopically labelled internal standard and adaptation of the gradient resulted in a fast, robust and sensitive assay. Because 4-hydroxycyclophosphamide is not stable in plasma, the compound is derivatized with semicarbazide immediately after sample collection. Sample preparation was carried out by protein precipitation with methanol-acetonitrile (1:1, v/v), containing isotopically labelled cyclophosphamide and hexamethylphosphoramide as internal standards. The LC separation was performed on a Zorbax Extend C18 column (150 mm x 2.1 mm ID, particle size 5 microm) with 1 mM ammonium hydroxide in water-acetonitrile (90:10, v/v) as the starting gradient, at a flow-rate of 0.40 mL/min with a total run time of 6 min. The lower limit of quantification (LLQ, using a 100 microL sample volume) was 200 ng/mL and the linear dynamic range extended to 40,000 ng/mL for cyclophosphamide and 50-5000 ng/mL for 4-hydroxycyclophosphamide. Accuracies as well as precisions were lower than 20% at the LLQ concentration and lower than 15% for all other concentrations. This method has been successfully applied in our institute to support ongoing studies into the pharmacokinetics and pharmacogenetics of cyclophosphamid

    Development and validation of LC-MS/MS methods for the quantification of the novel anticancer agent guadecitabine and its active metabolite β‑decitabine in human plasma, whole blood and urine

    No full text
    Guadecitabine (SGI-110), a dinucleotide of β‑decitabine and deoxyguanosine, is currently being evaluated in phase II/III clinical trials for the treatment of hematological malignancies and solid tumors. This article describes the development and validation of bioanalytical assays to quantify guadecitabine and its active metabolite β‑decitabine in human plasma, whole blood and urine using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Since β‑decitabine is rapidly metabolized further by cytidine deaminase, plasma and whole blood samples were kept on ice-water after collection and stabilized with tetrahydrouridine (THU) directly upon sample collection. Sample preparation consisted of protein precipitation for plasma and whole blood and dilution for urine samples and was further optimized for each matrix and analyte separately. Final extracts were injected onto a C6-phenyl column for guadecitabine analysis, or a Nova-Pak Silica column for β‑decitabine analysis. Gradient elution was applied for both analytes using the same eluents for each assay and detection was performed on triple quadrupole mass spectrometers operating in the positive ion mode (Sciex QTRAP 5500 and QTRAP 6500). The assay for guadecitabine was linear over a range of 1.0-200 ng/mL (plasma, whole blood) and 10-2000 ng/mL (urine). For β‑decitabine the assay was linear over a range of 0.5-100 ng/mL (plasma, whole blood) and 5-1000 ng/mL (urine). The presented methods were successfully validated according to the latest FDA and EMA guidelines for bioanalytical method validation and applied in a guadecitabine clinical mass balance trial in patients with advanced cancer

    Development and validation of LC-MS/MS methods for the quantification of the novel anticancer agent guadecitabine and its active metabolite β‑decitabine in human plasma, whole blood and urine

    No full text
    Guadecitabine (SGI-110), a dinucleotide of β‑decitabine and deoxyguanosine, is currently being evaluated in phase II/III clinical trials for the treatment of hematological malignancies and solid tumors. This article describes the development and validation of bioanalytical assays to quantify guadecitabine and its active metabolite β‑decitabine in human plasma, whole blood and urine using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Since β‑decitabine is rapidly metabolized further by cytidine deaminase, plasma and whole blood samples were kept on ice-water after collection and stabilized with tetrahydrouridine (THU) directly upon sample collection. Sample preparation consisted of protein precipitation for plasma and whole blood and dilution for urine samples and was further optimized for each matrix and analyte separately. Final extracts were injected onto a C6-phenyl column for guadecitabine analysis, or a Nova-Pak Silica column for β‑decitabine analysis. Gradient elution was applied for both analytes using the same eluents for each assay and detection was performed on triple quadrupole mass spectrometers operating in the positive ion mode (Sciex QTRAP 5500 and QTRAP 6500). The assay for guadecitabine was linear over a range of 1.0-200 ng/mL (plasma, whole blood) and 10-2000 ng/mL (urine). For β‑decitabine the assay was linear over a range of 0.5-100 ng/mL (plasma, whole blood) and 5-1000 ng/mL (urine). The presented methods were successfully validated according to the latest FDA and EMA guidelines for bioanalytical method validation and applied in a guadecitabine clinical mass balance trial in patients with advanced cancer

    Mass balance and metabolite profiling of 14C-guadecitabine in patients with advanced cancer

    No full text
    Purpose The objective of this mass balance trial was to determine the excretory pathways and metabolic profile of the novel anticancer agent guadecitabine in humans after administration of a 14C-radiolabeled dose of guadecitabine. Experimental design Included patients received at least one cycle of 45 mg/m2 guadecitabine subcutaneously as once-daily doses on Days 1 to 5 of a 28-day cycle, of which the 5th (last) dose in the first cycle was spiked with 14C-radiolabeled guadecitabine. Using different mass spectrometric techniques in combination with off-line liquid scintillation counting, the exposure and excretion of 14C-guadecitabine and metabolites in the systemic circulation, excreta, and intracellular target site were established. Results Five patients were enrolled in the mass balance trial. 14C-guadecitabine radioactivity was rapidly and almost exclusively excreted in urine, with an average amount of radioactivity recovered of 90.2%. After uptake in the systemic circulation, guadecitabine was converted into ß-decitabine (active anomer), and from ß-decitabine into the presumably inactive metabolites M1-M5. All identified metabolites in plasma and urine were ß-decitabine related products, suggesting almost complete conversion via cleavage of the phosphodiester bond between ß-decitabine and deoxyguanosine prior to further elimination. ß-decitabine enters the intracellular activation pathway, leading to detectable ß-decitabine-triphosphate and DNA incorporated ß-decitabine levels in peripheral blood mononuclear cells, providing confirmation that the drug reaches its DNA target site. Conclusion The metabolic and excretory pathways of guadecitabine and its metabolites were successfully characterized after subcutaneous guadecitabine administration in cancer patients. These data support the clinical evaluation of safety and efficacy of the subcutaneous guadecitabine drug product

    Mass balance and metabolite profiling of 14C-guadecitabine in patients with advanced cancer

    Get PDF
    Purpose The objective of this mass balance trial was to determine the excretory pathways and metabolic profile of the novel anticancer agent guadecitabine in humans after administration of a 14C-radiolabeled dose of guadecitabine. Experimental design Included patients received at least one cycle of 45 mg/m2 guadecitabine subcutaneously as once-daily doses on Days 1 to 5 of a 28-day cycle, of which the 5th (last) dose in the first cycle was spiked with 14C-radiolabeled guadecitabine. Using different mass spectrometric techniques in combination with off-line liquid scintillation counting, the exposure and excretion of 14C-guadecitabine and metabolites in the systemic circulation, excreta, and intracellular target site were established. Results Five patients were enrolled in the mass balance trial. 14C-guadecitabine radioactivity was rapidly and almost exclusively excreted in urine, with an average amount of radioactivity recovered of 90.2%. After uptake in the systemic circulation, guadecitabine was converted into ß-decitabine (active anomer), and from ß-decitabine into the presumably inactive metabolites M1-M5. All identified metabolites in plasma and urine were ß-decitabine related products, suggesting almost complete conversion via cleavage of the phosphodiester bond between ß-decitabine and deoxyguanosine prior to further elimination. ß-decitabine enters the intracellular activation pathway, leading to detectable ß-decitabine-triphosphate and DNA incorporated ß-decitabine levels in peripheral blood mononuclear cells, providing confirmation that the drug reaches its DNA target site. Conclusion The metabolic and excretory pathways of guadecitabine and its metabolites were successfully characterized after subcutaneous guadecitabine administration in cancer patients. These data support the clinical evaluation of safety and efficacy of the subcutaneous guadecitabine drug product
    corecore