81 research outputs found

    Substrate Adhesion Regulates Sealing Zone Architecture and Dynamics in Cultured Osteoclasts

    Get PDF
    The bone-degrading activity of osteoclasts depends on the formation of a cytoskeletal-adhesive super-structure known as the sealing zone (SZ). The SZ is a dynamic structure, consisting of a condensed array of podosomes, the elementary adhesion-mediating structures of osteoclasts, interconnected by F-actin filaments. The molecular composition and structure of the SZ were extensively investigated, yet despite its major importance for bone formation and remodelling, the mechanisms underlying its assembly and dynamics are still poorly understood. Here we determine the relations between matrix adhesiveness and the formation, stability and expansion of the SZ. By growing differentiated osteoclasts on micro-patterned glass substrates, where adhesive areas are separated by non-adhesive PLL-g-PEG barriers, we show that SZ growth and fusion strictly depend on the continuity of substrate adhesiveness, at the micrometer scale. We present a possible model for the role of mechanical forces in SZ formation and reorganization, inspired by the current data

    Bone Is Not Essential for Osteoclast Activation

    Get PDF
    Background: The mechanism whereby bone activates resorptive behavior in osteoclasts, the cells that resorb bone, is unknown. It is known that avb3 ligands are important, because blockade of avb3 receptor signaling inhibits bone resorption, but this might be through inhibition of adhesion or migration rather than resorption itself. Nor is it known whether avb3 ligands are sufficient for resorption the consensus is that bone mineral is essential for the recognition of bone as the substrate appropriate for resorption. Methodology/Principal Findings: Vitronectin- but not fibronectin-coated coverslips induced murine osteoclasts to secrete tartrate-resistant acid phosphatase, as they do on bone. Osteoclasts incubated on vitronectin, unlike fibronectin, formed podosome belts on glass coverslips, and these were modulated by resorption-regulating cytokines. Podosome belts formed on vitronectin-coated surfaces whether the substrates were rough or smooth, rigid or flexible. We developed a novel approach whereby the substrate-apposed surface of cells can be visualized in the scanning electron microscope. With this approach, supported by transmission electron microscopy, we found that osteoclasts on vitronectin-coated surfaces show ruffled borders and clear zones characteristic of resorbing osteoclasts. Ruffles were obscured by a film if cells were incubated in the cathepsin inhibitor E64, suggesting that removal of the film represents substrate-degrading behavior. Analogously, osteoclasts formed resorption-like trails on vitronectin-coated substrates. Like bone resorption, these trails were dependent upon resorbogenic cytokines and were inhibited by E64. Bone mineral induced actin rings and surface excavation only if first coated with vitronectin. Fibronectin could not substitute in any of these activities, despite enabling adhesion and cell spreading. Conclusions/Significance: Our results show that ligands avb3 are not only necessary but sufficient for the induction of resorptive behavior in osteoclasts; and suggest that bone is recognized through its affinity for these ligands, rather than by its mechanical or topographical attributes, or through a putative ‘mineral receptor’

    Hindered rolling and friction anisotropy in supported carbon nanotubes

    Full text link
    Carbon nanotubes (CNTs) are well known for their exceptional thermal, mechanical and electrical properties. For many CNT applications it is of the foremost importance to know their frictional properties. However, very little is known about the frictional forces between an individual nanotube and a substrate or tip. Here, we present a combined theoretical and experimental study of the frictional forces encountered by a nanosize tip sliding on top of a supported multiwall CNT along a direction parallel or transverse to the CNT axis. Surprisingly, we find a higher friction coefficient in the transverse direction compared with the parallel direction. This behaviour is explained by a simulation showing that transverse friction elicits a soft 'hindered rolling' of the tube and a frictional dissipation that is absent, or partially absent for chiral CNTs, when the tip slides parallel to the CNT axis. Our findings can help in developing better strategies for large-scale CNT assembling and sorting on a surface.Comment: 8 pages, 5 figure

    Geometry sensing by dendritic cells dictates spatial organization and PGE2-induced dissolution of podosomes

    Get PDF
    Assembly and disassembly of adhesion structures such as focal adhesions (FAs) and podosomes regulate cell adhesion and differentiation. On antigen-presenting dendritic cells (DCs), acquisition of a migratory and immunostimulatory phenotype depends on podosome dissolution by prostaglandin E2 (PGE2). Whereas the effects of physico-chemical and topographical cues have been extensively studied on FAs, little is known about how podosomes respond to these signals. Here, we show that, unlike for FAs, podosome formation is not controlled by substrate physico-chemical properties. We demonstrate that cell adhesion is the only prerequisite for podosome formation and that substrate availability dictates podosome density. Interestingly, we show that DCs sense 3-dimensional (3-D) geometry by aligning podosomes along the edges of 3-D micropatterned surfaces. Finally, whereas on a 2-dimensional (2-D) surface PGE2 causes a rapid increase in activated RhoA levels leading to fast podosome dissolution, 3-D geometric cues prevent PGE2-mediated RhoA activation resulting in impaired podosome dissolution even after prolonged stimulation. Our findings indicate that 2-D and 3-D geometric cues control the spatial organization of podosomes. More importantly, our studies demonstrate the importance of substrate dimensionality in regulating podosome dissolution and suggest that substrate dimensionality plays an important role in controlling DC activation, a key process in initiating immune responses

    The Architecture of the Adhesive Apparatus of Cultured Osteoclasts: From Podosome Formation to Sealing Zone Assembly

    Get PDF
    BACKGROUND: Osteoclasts are bone-degrading cells, which play a central role in physiological bone remodeling. Unbalanced osteoclast activity is largely responsible for pathological conditions such as osteoporosis. Osteoclasts develop specialized adhesion structures, the so-called podosomes, which subsequently undergo dramatic reorganization into sealing zones. These ring-like adhesion structures, which delimit the resorption site, effectively seal the cell to the substrate forming a diffusion barrier. The structural integrity of the sealing zone is essential for the cell ability to degrade bone, yet its structural organization is poorly understood. PRINCIPAL FINDINGS: Combining high-resolution scanning electron microscopy with fluorescence microscopy performed on the same sample, we mapped the molecular architecture of the osteoclast resorptive apparatus from individual podosomes to the sealing zone, at an unprecedented resolution. Podosomes are composed of an actin-bundle core, flanked by a ring containing adhesion proteins connected to the core via dome-like radial actin fibers. The sealing zone, hallmark of bone-resorbing osteoclasts, consists of a dense array of podosomes communicating through a network of actin filaments, parallel to the substrate and anchored to the adhesive plaque domain via radial actin fibers. SIGNIFICANCE: The sealing zone of osteoclasts cultured on bone is made of structural units clearly related to individual podosomes. It differs from individual or clustered podosomes in the higher density and degree of inter-connectivity of its building blocks, thus forming a unique continuous functional structure connecting the cell to its extracellular milieu. Through this continuous structure, signals reporting on the substrate condition may be transmitted to the whole cell, modulating the cell response under physiological and pathological conditions

    Coiling of elastic rods on rigid substrates

    Full text link
    corecore