533 research outputs found
Optimal T of cuprates: role of screening and reservoir layers
We explore the role of charge reservoir layers (CRLs) on the superconducting
transition temperature of cuprate superconductors. Specifically, we study the
effect of CRLs with efficient short distance dielectric screening coupled
capacitively to copper oxide metallic layers. We argue that dielectric
screening at short distances and at frequencies of the order of the
superconducting gap, but small compared to the Fermi energy can significantly
enhance T, the transition temperature of an unconventional superconductor.
We discuss the relevance of our qualitative arguments to a broader class of
unconventional superconductors.Comment: 8 Pages, 4 figure
The sub-millimetre evolution of V4334 Sgr (Sakurai's Object)
We report the results of monitoring of V4334 Sgr (Sakurai's Object) at 450
microns and 850 microns with SCUBA on the James Clerk Maxwell Telescope. The
flux density at both wavelengths has increased dramatically since 2001, and is
consistent with continued cooling of the dust shell in which Sakurai's Object
is still enshrouded, and which still dominates the near-infrared emission.
Assuming that the dust shell is optically thin at sub-millimetre wavelengths
and optically thick in the near-infrared, the sub-millimetre data imply a
mass-loss rate during 2003 of ~3.4(+/0.2)E-5 for a gas-to-dust ratio of 75.
This is consistent with the evidence from 1-5micron observations that the
mass-loss is steadily increasing.Comment: 5 pages, 4 eps figures, accepted for publication in MNRA
Seventy-One New L and T Dwarfs from the Sloan Digital Sky Survey
We present near-infrared observations of 71 newly discovered L and T dwarfs,
selected from imaging data of the Sloan Digital Sky Survey (SDSS) using the
i-dropout technique. Sixty-five of these dwarfs have been classified
spectroscopically according to the near-infrared L dwarf classification scheme
of Geballe et al. and the unified T dwarf classification scheme of Burgasser et
al. The spectral types of these dwarfs range from L3 to T7, and include the
latest types yet found in the SDSS. Six of the newly identified dwarfs are
classified as early- to mid-L dwarfs according to their photometric
near-infrared colors, and two others are classified photometrically as M
dwarfs. We also present new near-infrared spectra for five previously published
SDSS L and T dwarfs, and one L dwarf and one T dwarf discovered by Burgasser et
al. from the Two Micron All Sky Survey. The new SDSS sample includes 27 T
dwarfs and 30 dwarfs with spectral types spanning the complex L-T transition
(L7-T3). We continue to see a large (~0.5 mag) spread in J-H for L3 to T1
types, and a similar spread in H-K for all dwarfs later than L3. This color
dispersion is probably due to a range of grain sedimentation properties,
metallicity, and gravity. We also find L and T dwarfs with unusual colors and
spectral properties that may eventually help to disentangle these effects.Comment: accepted by AJ, 18 pages, 10 figures, 5 tables, emulateapj layou
56Ni dredge-up in the type IIp Supernova 1995V
We present contemporary infrared and optical spectra of the plateau type II
SN 1995V in NGC 1087 covering four epochs, approximately 22 to 84 days after
shock breakout. The data show, for the first time, the infrared spectroscopic
evolution during the plateau phase of a typical type II event. In the optical
region P Cygni lines of the Balmer series and of metals lines were identified.
The infrared (IR) spectra were largely dominated by the continuum, but P Cygni
Paschen lines and Brackett gamma lines were also clearly seen. The other
prominent IR features are confined to wavelengths blueward of 11000 \AA and
include Sr II 10327, Fe II 10547, C I 10695 and He I 10830 \AA. We demonstrate
the presence of He I 10830 \AA on days 69 and 85. The presence of this line at
such late times implies re-ionisation. A likely re-ionising mechanism is
gamma-ray deposition following the radioactive decay of 56Ni. We examine this
mechanism by constructing a spectral model for the He I 10830 \AA line based on
explosion model s15s7b2f of Weaver & Woosley (1993). We find that this does not
generate the observed line owing to the confinement of the 56Ni to the central
zones of the ejecta. In order to reproduce the He I line, it was necessary to
introduce additional upward mixing of the 56Ni, with 10^{-5} of the total
nickel mass reaching above the helium photosphere. In addition, we argue that
the He I line-formation region is likely to have been in the form of pure
helium clumps in the hydrogen envelope.Comment: Accepted for publication in MNRAS, 32 pages including 11 figures
(uses psfig.sty - included
Optical and Infrared Spectroscopy of the type IIn SN 1998S : Days 3-127
We present contemporary infrared and optical spectroscopic observations of
the type IIn SN 1998S for the period between 3 and 127 days after discovery. In
the first week the spectra are characterised by prominent broad emission lines
with narrow peaks superimposed on a very blue continuum(T~24000K). In the
following two weeks broad, blueshifted absorption components appeared in the
spectra and the temperature dropped. By day 44, broad emission components in H
and He reappeared in the spectra. These persisted to 100-130d, becoming
increasingly asymmetric. We agree with Leonard et al. (2000) that the broad
emission lines indicate interaction between the ejecta and circumstellar
material (CSM) and deduce that progenitor of SN 1998S appears to have gone
through at least two phases of mass loss, giving rise to two CSM zones.
Examination of the spectra indicates that the inner zone extended to <90AU,
while the outer CSM extended from 185AU to over 1800AU. Analysis of high
resolution spectra shows that the outer CSM had a velocity of 40-50 km/s.
Assuming a constant velocity, we can infer that the outer CSM wind commenced
more than 170 years ago, and ceased about 20 years ago, while the inner CSM
wind may have commenced less than 9 years ago. During the era of the outer CSM
wind the outflow was high, >2x10^{-5}M_{\odot}/yr corresponding to a mass loss
of at least 0.003M_{\odot} and suggesting a massive progenitor. We also model
the CO emission observed in SN 1998S. We deduce a CO mass of ~10^{-3} M_{\odot}
moving at ~2200km/s, and infer a mixed metal/He core of ~4M_{\odot}, again
indicating a massive progenitor.Comment: 22 pages, 14 figures, accepted in MNRA
- …