73 research outputs found
Communicable Ulcerative Colitis Induced by T-bet Deficiency in the Innate Immune System
Inflammatory bowel disease (IBD) has been attributed to overexuberant host immunity or the emergence of harmful intestinal flora. The transcription factor T-bet orchestrates inflammatory genetic programs in both adaptive and innate immunity. We describe a profound and unexpected function for T-bet in influencing the behavior of host inflammatory activity and commensal bacteria. T-bet deficiency in the innate immune system results in spontaneous and communicable ulcerative colitis in the absence of adaptive immunity and increased susceptibility to colitis in immunologically intact hosts. T-bet controls the response of the mucosal immune system to commensal bacteria by regulating TNF-α production in colonic dendritic cells, critical for colonic epithelial barrier maintenance. Loss of T-bet influences bacterial populations to become colitogenic, and this colitis is communicable to genetically intact hosts. These findings reveal a novel function for T-bet as a peacekeeper of host-commensal relationships and provide new perspectives on the pathophysiology of IBD
Actin-binding protein regulation by microRNAs as a novel microbial strategy to modulate phagocytosis by host cells: the case of N-Wasp and miR-142-3p
International audienc
Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation
The ability of Mycobacterium tuberculosis (Mtb) to persist inside host cells relies on metabolic adaptation, like the accumulation of lipid bodies (LBs) in the so-called foamy macrophages (FM), which are favorable to Mtb. The activation state of macrophages is tightly associated to different metabolic pathways, such as lipid metabolism, but whether differentiation towards FM differs between the macrophage activation profiles remains unclear. Here, we aimed to elucidate whether distinct macrophage activation states exposed to a tuberculosis-associated microenvironment or directly infected with Mtb can form FM. We showed that the triggering of signal transducer and activator of transcription 6 (STAT6) in interleukin (IL)-4-activated human macrophages (M(IL-4)) prevents FM formation induced by pleural effusion from patients with tuberculosis. In these cells, LBs are disrupted by lipolysis, and the released fatty acids enter the ÎČ-oxidation (FAO) pathway fueling the generation of ATP in mitochondria. Accordingly, murine alveolar macrophages, which exhibit a predominant FAO metabolism, are less prone to become FM than bone marrow derived-macrophages. Interestingly, direct infection of M(IL-4) macrophages with Mtb results in the establishment of aerobic glycolytic pathway and FM formation, which could be prevented by FAO activation or inhibition of the hypoxia-inducible factor 1-alpha (HIF-1α)-induced glycolytic pathway. In conclusion, our results demonstrate that Mtb has a remarkable capacity to induce FM formation through the rewiring of metabolic pathways in human macrophages, including the STAT6-driven alternatively activated program. This study provides key insights into macrophage metabolism and pathogen subversion strategies.Fil: Genoula, Melanie. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina. Centre National de la Recherche Scientifique; Francia. International Associated Laboratory; ArgentinaFil: Marin Franco, Jose Luis. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina. Centre National de la Recherche Scientifique; Francia. International Associated Laboratory; ArgentinaFil: Maio, Mariano. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Dolotowicz, BelĂ©n. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Ferreyra Compagnucci, Malena MarĂa. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Milillo, MarĂa AyelĂ©n. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Mascarau, RĂ©mi. UniversitĂ© de Toulouse; Francia. Centre National de la Recherche Scientifique; FranciaFil: Moraña, Eduardo JosĂ©. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas "Dr. Francisco Javier Muñiz"; ArgentinaFil: Palmero, Domingo Juan. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas "Dr. Francisco Javier Muñiz"; ArgentinaFil: Matteo, Mario JosĂ©. Universidad de Buenos Aires. Facultad de Medicina. Instituto de TisioneumonologĂa "raĂșl F. Vaccarezza".; ArgentinaFil: Fuentes, Federico. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: LĂłpez, Beatriz. DirecciĂłn Nacional de Instituto de InvestigaciĂłn. AdministraciĂłn Nacional de Laboratorio e Instituto de Salud "Dr. C. G. MalbrĂĄn"; ArgentinaFil: Barrionuevo, Paula. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Neyrolles, Olivier. International Associated Laboratory; Argentina. UniversitĂ© de Toulouse; Francia. Centre National de la Recherche Scientifique; FranciaFil: Cougoule, CĂ©line. Centre National de la Recherche Scientifique; Francia. UniversitĂ© de Toulouse; Francia. International Associated Laboratory; ArgentinaFil: Lugo Villarino, Geanncarlo. Centre National de la Recherche Scientifique; Francia. UniversitĂ© de Toulouse; Francia. International Associated Laboratory; ArgentinaFil: VĂ©rollet, Christel. Centre National de la Recherche Scientifique; Francia. International Associated Laboratory; Argentina. UniversitĂ© de Toulouse; FranciaFil: Sasiain, MarĂa del Carmen. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina. Centre National de la Recherche Scientifique; Francia. International Associated Laboratory; ArgentinaFil: Balboa, Luciana. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina. Centre National de la Recherche Scientifique; Francia. International Associated Laboratory; Argentin
Dissemination of <i>Mycobacterium tuberculosis</i> is associated to a <i>SIGLEC1</i> null variant that limits antigen exchange via trafficking extracellular vesicles
The identification of individuals with null alleles enables studying how the loss of gene function affects infection. We previously described a nonâfunctional variant in SIGLEC1, which encodes the myeloidâcell receptor Siglecâ1/CD169 implicated in HIVâ1 cellâtoâcell transmission. Here we report a significant association between the SIGLEC1 null variant and extrapulmonary dissemination of Mycobacterium tuberculosis (Mtb) in two clinical cohorts comprising 6,256 individuals. Local spread of bacteria within the lung is apparent in Mtbâinfected Siglecâ1 knockout mice which, despite having similar bacterial load, developed more extensive lesions compared to wild type mice. We find that Siglecâ1 is necessary to induce antigen presentation through extracellular vesicle uptake. We postulate that lack of Siglecâ1 delays the onset of protective immunity against Mtb by limiting antigen exchange via extracellular vesicles, allowing for an early local spread of mycobacteria that increases the risk for extrapulmonary dissemination
Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16(+) monocyte population via the IL-10/STAT3 axis
The human CD14+ monocyte compartment is composed by two subsets based on CD16 expression. We previously reported that this compartment is perturbed in tuberculosis (TB) patients, as reflected by the expansion of CD16+ monocytes along with disease severity. Whether this unbalance is beneficial or detrimental to host defense remains to be elucidated. Here in the context of active TB, we demonstrate that human monocytes are predisposed to differentiate towards an anti-inflammatory (M2-like) macrophage activation program characterized by theCD16+CD163+MerTK+pSTAT3+ phenotype and functional properties such as enhanced protease-dependent motility, pathogen permissivity and immunomodulation. This process is dependent on STAT3 activation, and loss-of-function experiments point towards a detrimental role in host defense against TB. Importantly, we provide a critical correlation between the abundance of the CD16+CD163+MerTK+pSTAT3+ cells and the progression of the disease either at the local level in a non-human primate tuberculous granuloma context, or at the systemic level through the detection of the soluble form of CD163 in human sera. Collectively, this study argues for the pathogenic role of the CD16+CD163+MerTK+pSTAT3+ monocyte-to-macrophage differentiation program and its potential as a target for TB therapy,and promotes the detection of circulating CD163 as a potential biomarker for disease progression and monitoringof treatment efficacy.Fil: Lastrucci, Claire. Centre National de la Recherche Scientifique; FranciaFil: BĂ©nard, Alan. Centre National de la Recherche Scientifique; FranciaFil: Balboa, Luciana. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Pingris, Karine. Centre National de la Recherche Scientifique; FranciaFil: Souriant, Shanti. Centre National de la Recherche Scientifique; FranciaFil: Poincloux, Renaud. Centre National de la Recherche Scientifique; FranciaFil: Al Saati, Talal. Inserm; FranciaFil: Rasolofo, Voahangy. Pasteur Institute in Antananarivo; MadagascarFil: GonzĂĄlez Montaner, Pablo. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas ; ArgentinaFil: Inwentarz, Sandra. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas ; ArgentinaFil: Moraña, Eduardo JosĂ©. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas ; ArgentinaFil: Kondova, Ivanela. Biomedical Primate Research Centre; PaĂses BajosFil: Verreck, Franck A. W.. Biomedical Primate Research Centre; PaĂses BajosFil: Sasiain, MarĂa del Carmen. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Neyrolles, Olivier. Centre National de la Recherche Scientifique; FranciaFil: Maridonneau Parini, Isabel. Centre National de la Recherche Scientifique; FranciaFil: Lugo Villarino, Geanncarlo. Centre National de la Recherche Scientifique; FranciaFil: Cougoule, Celine. Centre National de la Recherche Scientifique; Franci
SIGN ing a symbiotic treaty with gut microbiota
International audienc
Dressed not to kill: CD16 + monocytes impair immune defence against tuberculosis
International audienc
Tunneling Nanotubes: Intimate Communication between Myeloid Cells
Tunneling nanotubes (TNT) are dynamic connections between cells, which represent a novel route for cell-to-cell communication. A growing body of evidence points TNT towards a role for intercellular exchanges of signals, molecules, organelles, and pathogens, involving them in a diverse array of functions. TNT form among several cell types, including neuronal cells, epithelial cells, and almost all immune cells. In myeloid cells (e.g., macrophages, dendritic cells, and osteoclasts), intercellular communication via TNT contributes to their differentiation and immune functions. Importantly, TNT enable myeloid cells to communicate with a targeted neighboring or distant cell, as well as with other cell types, therefore creating a complex variety of cellular exchanges. TNT also contribute to pathogen spread as they serve as âcorridorsâ from a cell to another. Herein, we addressed the complexity of the definition and in vitro characterization of TNT in innate immune cells, the different processes involved in their formation, and their relevance in vivo. We also assess our current understanding of how TNT participate in immune surveillance and the spread of pathogens, with a particular interest for HIV-1. Overall, despite recent progress in this growing research field, we highlight that further investigation is needed to better unveil the role of TNT in both physiological and pathological conditions
- âŠ