40 research outputs found

    Standard-Dose Proton Pump Inhibitors in the Initial Non-eradication Treatment of Duodenal Ulcer: Systematic Review, Network Meta-Analysis, and Cost-Effectiveness Analysis

    Get PDF
    Background: Short-term use of standard-dose proton pump inhibitors (PPIs) is the first-line initial non-eradication treatment for duodenal ulcer (DU), but the choice on individual PPI drug is still controversial. The purpose of this study is to compare the efficacy, safety, and cost-effectiveness of standard-dose PPI medications in the initial non-eradication treatment of DU.Methods: We searched PubMed, Embase, Cochrane Library, Clinicaltrials.gov, China National Knowledge Infrastructure, VIP database, and the Wanfang database from their earliest records to September 2017. Randomized controlled trials (RCTs) evaluating omeprazole (20 mg/day), pantoprazole (40 mg/day), lansoprazole (30 mg/day), rabeprazole (20 mg/day), ilaprazole (10 mg/day), ranitidine (300 mg/day), famotidine (40 mg/day), or placebo for DU were included. The outcomes were 4-week ulcer healing rate (4-UHR) and the incidence of adverse events (AEs). A network meta-analysis (NMA) using a Bayesian random effects model was conducted, and a cost-effectiveness analysis using a decision tree was performed from the payer’s perspective over 1 year.Results: A total of 62 RCTs involving 10,339 participants (eight interventions) were included. The NMA showed that all the PPIs significantly increased the 4-UHR compared to H2 receptor antagonists (H2RA) and placebo, while there was no significant difference for 4-UHR among PPIs. As to the incidence of AEs, no significant difference was observed among PPIs, H2RA, and placebo during 4-week follow-up. Based on the costs of both PPIs and management of AEs in China, the incremental cost-effectiveness ratio per quality-adjusted life year (in US dollars) for pantoprazole, lansoprazole, rabeprazole, and ilaprazole compared to omeprazole corresponded to 5134.67,5134.67, 17801.67, 25488.31,and25488.31, and 44572.22, respectively.Conclusion: Although the efficacy and tolerance of different PPIs are similar in the initial non-eradication treatment of DU, pantoprazole (40 mg/day) seems to be the most cost-effective option in China

    Application of Theory of Fuzzy Selection in the Evaluation of the Port Logistics Information System

    No full text
    The port is always the hinge of the transportation. How to make the port be an efficient part of supply chain? One important way is to ameliorate its logistics information system. In this paper, we firstly give the definition of the port logistics information systems. In the following part, we describe the principles for evaluating the port logistics information system. In the rest of this paper, a faintness select technology is applied in evaluating such information system

    Remote Sensing Image Super-Resolution for the Visual System of a Flight Simulator: Dataset and Baseline

    No full text
    High-resolution remote sensing images are the key data source for the visual system of a flight simulator for training a qualified pilot. However, due to hardware limitations, it is an expensive task to collect spectral and spatial images at very high resolutions. In this work, we try to tackle this issue with another perspective based on image super-resolution (SR) technology. First, we present a new ultra-high-resolution remote sensing image dataset named Airport80, which is captured from the airspace near various airports. Second, a deep learning baseline is proposed by applying the generative and adversarial mechanism, which is able to reconstruct a high-resolution image during a single image super-resolution. Experimental results for our benchmark demonstrate the effectiveness of the proposed network and show it has reached satisfactory performances

    Adaptive volumetric light and atmospheric scattering.

    No full text
    An adaptive sampling-based atmospheric scattering and volumetric light framework for flight simulator (FS) is proposed to enhance the immersion and realism in real-time. The framework comprises epipolar sampling (ES), visible factor culling (VFC), interactive participating media density estimating (IPMDE). The main process of proposed architecture is as follows: the scene is divided into two levels according to the distance from the camera. In the high-level pipeline, the layer close to the camera, more samples, and smaller sampling step size is used to improve image quality. Further, the IPMDE method is designed to enhance realism by achieving interactivity with the participating media and multiple light sources. Further optimization is performed by the lookup table and 3D volumetric textures, by which we can compute the density of participating media and the scattering coefficient in parallel. In the low-level pipeline, when the samples are far away from the camera, its influence on the final output is also reduced, which results in fewer samples and a bigger sampling step size. The improved ES method further reduces the number of samples involved in ray marching using the features of epipolar geometry. It then generates global light effects and shadows of distant terrain. The VFC method uses an acceleration structure to quickly find the lit segments which eliminate samples blocked by obstacles. The experimental results demonstrate our architecture achieves a better sense of reality in real-time and is very suitable for FS

    Molecular Cloning and Expression Analysis of Lactate Dehydrogenase from the Oriental River Prawn Macrobrachium nipponense in Response to Hypoxia

    No full text
    Metabolic adaption to hypoxic stress in crustaceans implies a shift from aerobic to anaerobic metabolism. Lactate dehydrogenase (LDH) is a key enzyme in glycolysis in prawns. However, very little is known about the role of LDH in hypoxia inducible factor (HIF) pathways of prawns. In this study, full-length cDNA of LDH (MnLDH) was obtained from the oriental river prawn Macrobrachium nipponense, and was characterized. The full-length cDNA is 2267-bp with an open reading frame of 999 bp coding for a protein of 333 amino acids with conserved domains important for function and regulation. Phylogenetic analysis showed that MnLDH is close to LDHs from other invertebrates. Quantitative real-time PCR revealed that MnLDH is expressed in various tissues with the highest expression level in muscle. MnLDH mRNA transcript and protein abundance in muscle, but not in hepatopancreas, were induced by hypoxia. Silencing of hypoxia-inducible factor 1 (HIF-1) α or HIF-1β subunits blocked the hypoxia-dependent increase of LDH expression and enzyme activity in muscle. A series of MnLDH promoter sequences, especially the full-length promoter, generated an increase in luciferase expression relative to promoterless vector; furthermore, the expression of luciferase was induced by hypoxia. These results demonstrate that MnLDH is probably involved a HIF-1-dependent pathway during hypoxia in the highly active metabolism of muscle

    Three-dimensional dipole orientation mapping with high temporal-spatial resolution using polarization modulation

    No full text
    Abstract Fluorescence polarization microscopy is widely used in biology for molecular orientation properties. However, due to the limited temporal resolution of single-molecule orientation localization microscopy and the limited orientation dimension of polarization modulation techniques, achieving simultaneous high temporal-spatial resolution mapping of the three-dimensional (3D) orientation of fluorescent dipoles remains an outstanding problem. Here, we present a super-resolution 3D orientation mapping (3DOM) microscope that resolves 3D orientation by extracting phase information of the six polarization modulation components in reciprocal space. 3DOM achieves an azimuthal precision of 2° and a polar precision of 3° with spatial resolution of up to 128 nm in the experiments. We validate that 3DOM not only reveals the heterogeneity of the milk fat globule membrane, but also elucidates the 3D structure of biological filaments, including the 3D spatial conformation of λ-DNA and the structural disorder of actin filaments. Furthermore, 3DOM images the dipole dynamics of microtubules labeled with green fluorescent protein in live U2OS cells, reporting dynamic 3D orientation variations. Given its easy integration into existing wide-field microscopes, we expect the 3DOM microscope to provide a multi-view versatile strategy for investigating molecular structure and dynamics in biological macromolecules across multiple spatial and temporal scales
    corecore