42,746 research outputs found

    Anti-chiral edge states in an exciton polariton strip

    Full text link
    We present a scheme to obtain anti-chiral edge states in an exciton-polariton honeycomb lattice with strip geometry, where the modes corresponding to both edges propagate in the same direction. Under resonant pumping the effect of a polariton condensate with nonzero velocity in one linear polarization is predicted to tilt the dispersion of polaritons in the other, which results in an energy shift between two Dirac cones and the otherwise flat edge states become tilted. Our simulations show that due to the spatial separation from the bulk modes the edge modes are robust against disorder.Comment: 6 pages, 5 figure

    The Design for a Nanoscale Single-Photon Spin Splitter

    Full text link
    We propose using the effective spin-orbit interaction of light in Bragg-modulated cylindrical waveguides for the effcient separation of spin-up and spin-down photons emitted by a single photon emitter. Due to the spin and directional dependence of photonic stopbands in the waveguides, spin-up (down) photon propagation in the negative (positive) direction along the waveguide axis is blocked while the same photon freely propagates in the opposite direction.Comment: 5 pages, 3 figure

    Detecting time-fragmented cache attacks against AES using Performance Monitoring Counters

    Get PDF
    Cache timing attacks use shared caches in multi-core processors as side channels to extract information from victim processes. These attacks are particularly dangerous in cloud infrastructures, in which the deployed countermeasures cause collateral effects in terms of performance loss and increase in energy consumption. We propose to monitor the victim process using an independent monitoring (detector) process, that continuously measures selected Performance Monitoring Counters (PMC) to detect the presence of an attack. Ad-hoc countermeasures can be applied only when such a risky situation arises. In our case, the victim process is the AES encryption algorithm and the attack is performed by means of random encryption requests. We demonstrate that PMCs are a feasible tool to detect the attack and that sampling PMCs at high frequencies is worse than sampling at lower frequencies in terms of detection capabilities, particularly when the attack is fragmented in time to try to be hidden from detection

    Effect of collision dephasing on atomic evolutions in a high-Q cavity

    Get PDF
    The decoherence mechanism of a single atom inside a high-Q cavity is studied, and the results are compared with experimental observations performed by M. Brune et al. [Phys. Rev. Lett. 76, 1800 (1996)]. Collision dephasing and cavity leakage are considered as the major sources giving rise to decoherence effect. In particular, we show that the experimental data can be fitted very well by assuming suitable values of collision Stark shifts and dark count rate in the detector

    Relating Quantum Information to Charged Black Holes

    Full text link
    Quantum non-cloning theorem and a thought experiment are discussed for charged black holes whose global structure exhibits an event and a Cauchy horizon. We take Reissner-Norstr\"{o}m black holes and two-dimensional dilaton black holes as concrete examples. The results show that the quantum non-cloning theorem and the black hole complementarity are far from consistent inside the inner horizon. The relevance of this work to non-local measurements is briefly discussed.Comment: 14 pages, 2 figure

    Discovery of a Perseus-like cloud in the early Universe: HI-to-H2 transition, carbon monoxide and small dust grains at zabs=2.53 towards the quasar J0000+0048

    Full text link
    We present the discovery of a molecular cloud at zabs=2.5255 along the line of sight to the quasar J0000+0048. We perform a detailed analysis of the absorption lines from ionic, neutral atomic and molecular species in different excitation levels, as well as the broad-band dust extinction. We find that the absorber classifies as a Damped Lyman-alpha system (DLA) with logN(HI)(cm^-2)=20.8+/-0.1. The DLA has super-Solar metallicity with a depletion pattern typical of cold gas and an overall molecular fraction ~50%. This is the highest f-value observed to date in a high-z intervening system. Most of the molecular hydrogen arises from a clearly identified narrow (b~0.7 km/s), cold component in which CO molecules are also found, with logN(CO)~15. We study the chemical and physical conditions in the cold gas. We find that the line of sight probes the gas deep after the HI-to-H2 transition in a ~4-5 pc-size cloud with volumic density nH~80 cm^-3 and temperature of only 50 K. Our model suggests that the presence of small dust grains (down to about 0.001 {\mu}m) and high cosmic ray ionisation rate (zeta_H a few times 10^-15 s^-1) are needed to explain the observed atomic and molecular abundances. The presence of small grains is also in agreement with the observed steep extinction curve that also features a 2175 A bump. The properties of this cloud are very similar to what is seen in diffuse molecular regions of the nearby Perseus complex. The high excitation temperature of CO rotational levels towards J0000+0048 betrays however the higher temperature of the cosmic microwave background. Using the derived physical conditions, we correct for a small contribution (0.3 K) of collisional excitation and obtain TCMB(z = 2.53)~9.6 K, in perfect agreement with the predicted adiabatic cooling of the Universe. [abridged]Comment: 24 pages, 24 figures, accepted for publication in A&

    Effects of Capping on the (Ga,Mn)As Magnetic Depth Profile

    Full text link
    Annealing can increase the Curie temperature and net magnetization in uncapped (Ga,Mn)As films, effects that are suppressed when the films are capped with GaAs. Previous polarized neutron reflectometry (PNR) studies of uncapped (Ga,Mn)As revealed a pronounced magnetization gradient that was reduced after annealing. We have extended this study to (Ga,Mn)As capped with GaAs. We observe no increase in Curie temperature or net magnetization upon annealing. Furthermore, PNR measurements indicate that annealing produces minimal differences in the depth-dependent magnetization, as both as-grown and annealed films feature a significant magnetization gradient. These results suggest that the GaAs cap inhibits redistribution of interstitial Mn impurities during annealing.Comment: 12 pages, 3 figures, submitted to Applied Physics Letter
    corecore