29,457 research outputs found
[Colored solutions of Yang-Baxter equation from representations of U_{q}gl(2)]
We study the Hopf algebra structure and the highest weight representation of
a multiparameter version of . The commutation relations as well as
other Hopf algebra maps are explicitly given. We show that the multiparameter
universal matrix can be constructed directly as a quantum double
intertwiner, without using Reshetikhin's transformation. An interesting feature
automatically appears in the representation theory: it can be divided into two
types, one for generic , the other for being a root of unity. When
applying the representation theory to the multiparameter universal
matrix, the so called standard and nonstandard colored solutions of the Yang-Baxter equation is obtained.Comment: [14]pages, latex, no figure
Spin photocurrent, its spectra dependence, and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas
Converse effect of spin photocurrent and current induced spin polarization
are experimentally demonstrated in the same two-dimensional electron gas system
with Rashba spin splitting. Their consistency with the strength of the Rashba
coupling as measured from beating of the Shubnikov-de Haas oscillations reveals
a unified picture for the spin photocurrent, current-induced spin polarization
and spin orbit coupling. In addition, the observed spectral inversion of the
spin photocurrent indicates the system with dominating structure inversion
asymmetry.Comment: 13 pages, 4 figure
Quantum Algebras Associated With Bell States
The antisymmetric solution of the braided Yang--Baxter equation called the
Bell matrix becomes interesting in quantum information theory because it can
generate all Bell states from product states. In this paper, we study the
quantum algebra through the FRT construction of the Bell matrix. In its four
dimensional representations via the coproduct of its two dimensional
representations, we find algebraic structures including a composition series
and a direct sum of its two dimensional representations to characterize this
quantum algebra. We also present the quantum algebra using the FRT construction
of Yang--Baxterization of the Bell matrix.Comment: v1: 15 pages, 2 figures, latex; v2: 18 pages, 2 figures, latex,
references and notes adde
Flat bands as a route to high-temperature superconductivity in graphite
Superconductivity is traditionally viewed as a low-temperature phenomenon.
Within the BCS theory this is understood to result from the fact that the
pairing of electrons takes place only close to the usually two-dimensional
Fermi surface residing at a finite chemical potential. Because of this, the
critical temperature is exponentially suppressed compared to the microscopic
energy scales. On the other hand, pairing electrons around a dispersionless
(flat) energy band leads to very strong superconductivity, with a mean-field
critical temperature linearly proportional to the microscopic coupling
constant. The prize to be paid is that flat bands can generally be generated
only on surfaces and interfaces, where high-temperature superconductivity would
show up. The flat-band character and the low dimensionality also mean that
despite the high critical temperature such a superconducting state would be
subject to strong fluctuations. Here we discuss the topological and
non-topological flat bands discussed in different systems, and show that
graphite is a good candidate for showing high-temperature flat-band interface
superconductivity.Comment: Submitted as a chapter to the book on "Basic Physics of
functionalized Graphite", 21 pages, 12 figure
Re-Inventing Public Education:The New Role of Knowledge in Education Policy-Making
This article focuses on the changing role of knowledge in education policy making within the knowledge society. Through an examination of key policy texts, the Scottish case of Integrated Children Services provision is used to exemplify this new trend. We discuss the ways in which knowledge is being used in order to re-configure education as part of a range of public services designed to meet individuals' needs. This, we argue, has led to a 'scientization' of education governance where it is only knowledge, closely intertwined with action (expressed as 'measures') that can reveal problems and shape solutions. The article concludes by highlighting the key role of knowledge policy and governance in orienting education policy making through a re-invention of the public role of education
Algebraic Bethe Ansatz for Integrable Extended Hubbard Models Arising from Supersymmetric Group Solutions
Integrable extended Hubbard models arising from symmetric group solutions are
examined in the framework of the graded Quantum Inverse Scattering Method. The
Bethe ansatz equations for all these models are derived by using the algebraic
Bethe ansatz method.Comment: 15 pages, RevTex, No figures, to be published in J. Phys.
Stochastic Physics, Complex Systems and Biology
In complex systems, the interplay between nonlinear and stochastic dynamics,
e.g., J. Monod's necessity and chance, gives rise to an evolutionary process in
Darwinian sense, in terms of discrete jumps among attractors, with punctuated
equilibrium, spontaneous random "mutations" and "adaptations". On an
evlutionary time scale it produces sustainable diversity among individuals in a
homogeneous population rather than convergence as usually predicted by a
deterministic dynamics. The emergent discrete states in such a system, i.e.,
attractors, have natural robustness against both internal and external
perturbations. Phenotypic states of a biological cell, a mesoscopic nonlinear
stochastic open biochemical system, could be understood through such a
perspective.Comment: 10 page
Holographic fermions in charged Gauss-Bonnet black hole
We study the properties of the Green's functions of the fermions in charged
Gauss-Bonnet black hole. What we want to do is to investigate how the presence
of Gauss-Bonnet coupling constant affects the dispersion relation,
which is a characteristic of Fermi or non-Fermi liquid, as well as what
properties such a system has, for instance, the Particle-hole (a)symmetry. One
important result of this research is that we find for , the behavior of
this system is different from that of the Landau Fermi liquid and so the system
can be candidates for holographic dual of generalized non-Fermi liquids. More
importantly, the behavior of this system increasingly similar to that of the
Landau Fermi liquid when is approaching its lower bound. Also we find
that this system possesses the Particle-hole asymmetry when , another
important characteristic of this system. In addition, we also investigate
briefly the cases of the charge dependence.Comment: 22 pages, 6 figures; version published in JHE
- …