4,809 research outputs found
Invertible condition of quantum Fisher information matrix for a mixed qubit
Estimating multiparamter simultaneously as precise as possible is an
important goal of quantum metrolo- gy. As a first step to this end, here we
give a condition determining whether two arbitrary parameters can be estimated
simultaneously for a qubit in the mixed state. An application of this condition
is shown.Comment: The European Physical Journal D 201
Elastic modulus of viral nanotubes
We report an experimental and theoretical study of the radial elasticity of tobacco mosaic virus (TMV) nanotubes. An atomic force microscope tip is used to apply small radial indentations to deform TMV nanotubes. The initial elastic response of TMV nanotubes can be described by finite-element analysis in 5 nm indentation depths and Hertz theory in 1.5 nm indentation depths. The derived radial Young\u27s modulus of TMV nanotubes is 0.92 +/- 0.15 GPa from finite-element analysis and 1.0 +/- 0.2 GPa from the Hertz model, which are comparable with the reported axial Young\u27s modulus of 1.1 GPa [Falvo et al., Biophys. J. 72, 1396 (1997)]
New universal gates for topological quantum computation with Fibonacci- composite Majorana edge modes on topological superconductor multilayers
We propose a new design of universal topological quantum computer device
through a hybrid of the 1-, 2- and 7-layers of chiral topological
superconductor (TSC) thin films. Based on the coset
construction, strongly correlated Majorana fermion edge modes on the 7-layers
of TSC are factorized into the composite of the Fibonacci -anyon
and -anyon modes in the tricritical Ising model. Furthermore, the
deconfinement of and via the interacting potential gives
the braiding of either or . Topological phase gates are
assembled by the braidings. With these topological phase gates, we find a set
of fully topological universal gates for the composite
Majorana-Ising-type quantum computation. Because the Hilbert space still
possesses a tensor product structure of quibts and is characterized by the
fermion parities, encoding quantum information in this machine is more
efficient and substantial than that with Fibonacci anyons. The computation
results is easier to be read out by electric signals, so are the initial data
inputted.Comment: 6 pages, 3 figues, revised versio
- …