48 research outputs found
A seven-gene signature predicts overall survival of patients with colorectal cancer
Colorectal cancer (CRC) is a major cause of global cancer mortality. Gene expression profiles can help predict prognosis of patients with CRC. In most of previous studies, disease recurrence was analyzed as the survival endpoint. Thus we aim to build a robust gene signature for prediction of overall survival (OS) in patients with CRC. Fresh frozen CRC tissues from 64 patients were analyzed using Affymetrix HG-U133plus 2.0 gene arrays. By performing univariate survival analysis, 6487 genes were found to be associated with the OS in our cohort. KEGG analysis revealed that these genes were mainly involved in pathways such as endocytosis, axon guidance, spliceosome, Wnt signalling and ubiquitin mediated proteolysis. A seven-gene signature was further selected by a robust likelihood-based survival modelling approach. The prognostic model of seven-gene signature (NHLRC3, ZDHHC21, PRR14L, CCBL1, PTPRB, PNPO, and PPIP5K2) was constructed and weighted by regression coefficient, which divided patients into high- and low-risk groups. The OS for patients in high-risk group was significantly poorer compared with patients in low-risk group. Moreover, all seven genes were found to be differentially expressed in CRC tissues as compared with adjacent normal tissues, indicating their potential role in CRC initiation and progression. This seven-gene signature was further validated as an independent prognostic marker for OS prediction in patients with CRC in other two independent cohorts. In short, we developed a robust seven-gene signature that can predict the OS for CRC patients, providing new insights into identification of CRC patients with high risk of mortality
Antagonistic Actions of Juvenile Hormone and 20-Hydroxyecdysone Within the Ring Gland Determine Developmental Transitions in \u3cem\u3eDrosophila\u3c/em\u3e
In both vertebrates and insects, developmental transition from the juvenile stage to adulthood is regulated by steroid hormones. In insects, the steroid hormone, 20-hydroxyecdysone (20E), elicits metamorphosis, thus promoting this transition, while the sesquiterpenoid juvenile hormone (JH) antagonizes 20E signaling to prevent precocious metamorphosis during the larval stages. However, not much is known about the mechanisms involved in cross-talk between these two hormones. In this study, we discovered that in the ring gland (RG) of Drosophila larvae, JH and 20E control each other’s biosynthesis. JH induces expression of a Krüppel-like transcription factor gene Kr-h1 in the prothoracic gland (PG), a portion of the RG that produces the 20E precursor ecdysone. By reducing both steroidogenesis autoregulation and PG size, high levels of Kr-h1 in the PG inhibit ecdysteriod biosynthesis, thus maintaining juvenile status. JH biosynthesis is prevented by 20E in the corpus allatum, the other portion of the RG that produces JH, to ensure the occurrence of metamorphosis. Hence, antagonistic actions of JH and 20E within the RG determine developmental transitions in Drosophila. Our study proposes a mechanism of cross-talk between the two major hormones in the regulation of insect metamorphosis
Efficacy and safety of bevacizumab in patients with malignant melanoma: a systematic review and PRISMA-compliant meta-analysis of randomized controlled trials and non-comparative clinical studies
Background: Malignant melanoma is a highly aggressive cancer that spreads and metastasizes quickly. In recent years, the antiangiogenic drug bevacizumab has been trialed to treat malignant melanoma. We conducted the first meta-analysis to examine the efficacy and safety of bevacizumab combined with other drugs in malignant melanoma.Methods: We searched for randomized controlled trials (RCTs) and non-comparative clinical studies of bevacizumab combined with chemotherapy, targeted medicine, and interferon to treat malignant melanoma in PubMed, Embase, the Cochrane Library, and Web of Science. Meta-analysis of RCT was performed using Review Manager (version 5.4), and non-comparative meta-analysis was performed using R (version 4.0.3). The primary outcome was the objective response rate. Depending on the heterogeneity of the included studies, the pooled outcomes and 95% CI were calculated using either random-effects or fixed-effect models. Subgroup outcomes were calculated with possible relevant variables. Sensitivity analyses were carried out by excluding each study from the highly heterogeneous pooled results in turn. Funnel plot and Begg’s test were used to test the included studies' potential publication bias. The level of significance was set at p < 0.05.Results: This meta-analysis included 20 trials: five RCTs and 15 non-comparative clinical studies with a total of 23 bevacizumab intervention arms. In 14 treatment arms, bevacizumab was combined with chemotherapy drugs such as fotemustine, dacarbazine, carboplatin/paclitaxel, and temozolomide. In six treatment arms, bevacizumab was combined with targeted medicines such as imatinib, everolimus, sorafenib, erlotinib, and temsirolimus. There were also six treatment arms that used bevacizumab in combination with interferon. The pooled objective response rate was 15.8% (95% CI, 11.4%–20.2%). Bevacizumab plus carboplatin/paclitaxel significantly increased the overall survival compared to carboplatin/paclitaxel (HR = 0.64, 95% CI, 0.49-0.85, p < 0.01). Fatigue, nausea, leukopenia, thrombocytopenia, and neutropenia were the most common adverse events. The pooled incidence of hypertension of all bevacizumab arms in malignant melanoma was 32.4% (95% CI, 24.5%–40.3%).Conclusion: This study showed that bevacizumab combined with chemotherapy might be effective and well-tolerated in patients with stage III or IV unresectable malignant melanoma.Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=304625], identifier [CRD42022304625]
EGFR Tyrosine Kinase Inhibitors Activate Autophagy as a Cytoprotective Response in Human Lung Cancer Cells
Epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib have been widely used in patients with non-small-cell lung cancer. Unfortunately, the efficacy of EGFR-TKIs is limited because of natural and acquired resistance. As a novel cytoprotective mechanism for tumor cell to survive under unfavorable conditions, autophagy has been proposed to play a role in drug resistance of tumor cells. Whether autophagy can be activated by gefitinib or erlotinib and thereby impair the sensitivity of targeted therapy to lung cancer cells remains unknown. Here, we first report that gefitinib or erlotinib can induce a high level of autophagy, which was accompanied by the inhibition of the PI3K/Akt/mTOR signaling pathway. Moreover, cytotoxicity induced by gefitinib or erlotinib was greatly enhanced after autophagy inhibition by the pharmacological inhibitor chloroquine (CQ) and siRNAs targeting ATG5 and ATG7, the most important components for the formation of autophagosome. Interestingly, EGFR-TKIs can still induce cell autophagy even after EGFR expression was reduced by EGFR specific siRNAs. In conclusion, we found that autophagy can be activated by EGFR-TKIs in lung cancer cells and inhibition of autophagy augmented the growth inhibitory effect of EGFR-TKIs. Autophagy inhibition thus represents a promising approach to improve the efficacy of EGFR-TKIs in the treatment of patients with advanced non-small-cell lung cancer
SPARCL1, a Novel Prognostic Predictive Factor for GI Malignancies: a Meta-Analysis
Background/Aims: Secreted protein acidic and rich in cysteines-like 1 (SPARCL1) is abnormally expressed in gastrointestinal (GI) malignancies. However, the correlation between SPARCL1 expression and the prognosis of patients remains unknown. Therefore, we performed a meta-analysis to investigate the potential value of SPARCL1 as a prognostic predictive marker for GI malignancies. Methods: The PubMed, Embase, EBSCO, CNKI, and Wanfang databases were systematically searched for studies examining SPARCL1 and clinicopathological features, including the prognoses of patients. Hazard ratios (HRs) and odds ratios (ORs) from individual studies were calculated and pooled using a random-effects or fix-effects model. Heterogeneity and publication bias analyses were performed. Results: Data from 8 studies, including a total of 2,356 patients, were summarized. The expression of SPARCL1 suggested a better prognosis (HR=0.57, 95% CI: 0.445-0.698, P=0.000) and was associated with clinicopathological features of GI malignancies, including distant metastasis (OR=0.44, 95% CI: 0.23-0.85, P=0.014), lymph node metastasis (OR=0.56, 95% CI: 0.39–0.81, P=0.002) and tumor differentiation (OR=2.21, 95% CI: 1.82–2.69, P=0.000). Subgroup analyses based on cancer type revealed that the expression of SPARCL1 had no effect on lymph node metastasis in colorectal cancer, and it did not influence tumor differentiation in gastric cancer. Egger’s test showed no evidence of publication bias (all P>0.05). Conclusion: SPARCL1 could be a novel prognostic predictive factor for GI malignancies. The expression of SPARCL1 could influence the clinicopathological features of GI malignancies. Further large-scale studies are essential to confirm SPARCL1’s prognostic predictive value, and more fundamental experimental studies are needed to illustrate the mechanisms
High expression of SHP2 predicts a promising prognosis in colorectal cancer
Background: Src homology 2 domain-containing phosphatase 2 (SHP2) is hyper-activated in some solid tumors. Previous findings suggest that the expression of SHP2 in colorectal cancer (CRC) may be associated with prognosis. However, validation with large sample data is lacking. Materials and Methods: Tissue microarrays containing 860 CRCs and 197 mucosal tissues adjacent to the tumors were constructed. Immunohistochemistry was used to evaluate the expression of SHP2. Differences between SHP2 expression and clinicopathological parameters were evaluated. Kaplan–Meier survival curves and log-rank tests were used to analyze the relationships between SHP2 expression and the overall survival of patients. A Cox proportional hazard regression model was used for univariate and multivariate analyses of prognostic factors. Results: SHP2 expression in CRCs tissues was significantly higher than those in adjacent mucosal tissues (P < 0.001). SHP2 expression was related to tumor differentiation, depth of invasion, distant metastasis, vascular tumor thrombus, lymph node metastasis, and TNM classification (P < 0.05). The prognosis of the high-expression group of SHP2 was significantly better than that of the low-expression group (P = 0.008). Univariate analysis showed that the expression of SHP2 was a prognostic factor for CRC (P = 0.008). Multivariate analysis demonstrated that SHP2 remained an independent prognostic factor for CRC (P = 0.033). Conclusion: The expression of SHP2 was significantly higher in CRC tissues than in adjacent normal tissues. High expression of SHP2 was associated with a promising outcome, suggesting that SHP2 may be a favorable prognostic indicator of CRC
Estrogenic and non-estrogenic effects of bisphenol A and its action mechanism in the zebrafish model: An overview of the past two decades of work
Bisphenol A (BPA) is the most simple and predominant component of the Bisphenol family. BPA is widely present in the environment and the human body as a result of its extensive usage in the plastic and epoxy resins of consumer goods like water bottles, food containers, and tableware. Since the 1930s, when BPA’s estrogenic activity was first observed, and it was labeled as a “mimic hormone of E2”, studies on the endocrine-disrupting effects of BPA then have been widely conducted. As a top vertebrate model for genetic and developmental studies, the zebrafish has caught tremendous attention in the past two decades. By using the zebrafish, the negative effects of BPA either through estrogenic signaling pathways or non-estrogenic signaling pathways were largely found. In this review, we tried to draw a full picture of the current state of knowledge on the estrogenic and non-estrogenic effects of BPA with their mechanisms of action through the zebrafish model of the past two decades, which may help to fully understand the endocrine-disrupting effects of BPA and its action mechanism, and give a direction for the future studies