4 research outputs found

    A Tool for Computing and Estimating the Volume of the Solution Space of SMT(LA)

    Full text link
    There are already quite a few tools for solving the Satisfiability Modulo Theories (SMT) problems. In this paper, we present \texttt{VolCE}, a tool for counting the solutions of SMT constraints, or in other words, for computing the volume of the solution space. Its input is essentially a set of Boolean combinations of linear constraints, where the numeric variables are either all integers or all reals, and each variable is bounded. The tool extends SMT solving with integer solution counting and volume computation/estimation for convex polytopes. Effective heuristics are adopted, which enable the tool to deal with high-dimensional problem instances efficiently and accurately

    Fair Division Minimizing Inequality

    Full text link
    Behavioural economists have shown that people are often averse to inequality and will make choices to avoid unequal outcomes. In this paper, we consider how to allocate indivisible goods fairly so as to minimize inequality. We consider how this interacts with axiomatic properties such as envy-freeness, Pareto efficiency and strategy-proofness. We also consider the computational complexity of computing allocations minimizing inequality. Unfortunately, this is computationally intractable in general so we consider several tractable greedy online mechanisms that minimize inequality. Finally, we run experiments to explore the performance of these methods

    A Fast and Practical Method to Estimate Volumes of Convex Polytopes

    Full text link
    The volume is an important attribute of a convex body. In general, it is quite difficult to calculate the exact volume. But in many cases, it suffices to have an approximate value. Volume estimation methods for convex bodies have been extensively studied in theory, however, there is still a lack of practical implementations of such methods. In this paper, we present an efficient method which is based on the Multiphase Monte-Carlo algorithm to estimate volumes of convex polytopes. It uses the coordinate directions hit-and-run method, and employs a technique of reutilizing sample points. The experiments show that our method can efficiently handle instances with dozens of dimensions with high accuracy

    Counting the Number of Solutions to Constraints

    Full text link
    Compared with constraint satisfaction problems, counting problems have received less attention. In this paper, we survey research works on the problems of counting the number of solutions to constraints. The constraints may take various forms, including, formulas in the propositional logic, linear inequalities over the reals or integers, Boolean combination of linear constraints. We describe some techniques and tools for solving the counting problems, as well as some applications (e.g., applications to automated reasoning, program analysis, formal verification and information security)
    corecore