6 research outputs found

    Sandstone matrix acidizing knowledge and future development

    Get PDF
    To meet rising global demands for energy, the oil and gas industry continuously strives to develop innovative oilfield technologies. With the development of new enhanced oil recovery techniques, sandstone acidizing has been significantly developed to contribute to the petroleum industry. Different acid combinations have been applied to the formation, which result in minimizing the near wellbore damage and improving the well productivity. A combination of hydrofluoric acid and hydrochloric acid (HF:HCl) known as mud acid has gained attractiveness in improving the porosity and permeability of the reservoir formation. However, high-temperature matrix acidizing is now growing since most of the wells nowadays become deeper and hotter temperature reservoirs, with a temperature higher than 200 °F. As a result, mud acid becomes corrosive, forms precipitates and reacts rapidly, which causes early consumption of acid, hence becoming less efficient due to high pH value. However, different acids have been developed to combat these problems where studies on retarded mud acids, organic-HF acids, emulsified acids, chelating agents have shown their effectiveness at different conditions. These acids proved to be alternative to mud acid in sandstone acidizing, but the reaction mechanism and experimental analysis have not yet been investigated. The paper critically reviews the sandstone acidizing mechanism with different acids, problems occurred during the application of different acids and explores the reasons when matrix stimulation is successful over fracturing. This paper also explores the future developing requirement for matrix acidizing treatments and new experimental techniques that can be useful for further development, particularly in developing new acids and acidizing techniques, which would provide better results and information of topology, morphology and mineral dissolution and the challenges associated with implementing these “new” technologies

    Ring-Exchange Interaction Effects on Magnons in Dirac Magnet CoTiO3_3

    Full text link
    In magnetically ordered materials with localized electrons, the fundamental magnetic interactions are due to exchange of electrons [1-3]. Typically, only the interaction between pairs of electrons' spins is considered to explain the nature of the ground state and its excitations, whereas three-, four-, and six-spin interactions are ignored. When these higher order processes occur in a loop they are called cyclic or ring exchange. The ring-exchange interaction is required to explain low temperature behavior in bulk and thin films of solid 3^3He [4-8]. It also plays a crucial role in the quantum magnet La2_2CuO4_4 [9,10]. Here, we use a combination of time domain THz (TDTS) and magneto-Raman spectroscopies to measure the low energy magnetic excitations in CoTiO3_3, a proposed Dirac topological magnon material [11,12] where the origin of the energy gap in the magnon spectrum at the Brillouin zone center remains unclear. We measured the magnetic field dependence of the energies of the two lowest energy magnons and determine that the gap opens due to the ring-exchange interaction between the six spins in a hexagon. This interaction also explains the selection rules of the THz magnon absorption. Finally, we clarify that topological surface magnons are not expected in CoTiO3_3. Our study demonstrates the power of combining TDTS and Raman spectroscopies with theory to identify the microscopic origins of the magnetic excitations in quantum magnets.Comment: 7 pages, 4 figures in main text, 26 pages and 11 figures in supplemen
    corecore