22 research outputs found
Recommended from our members
Microfluidic Platform for Adherent Single Cell High-Throughput Screening
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Traditionally, in vitro investigations on biology and physiology of cells rely on averaging the
responses eliciting from heterogeneous cell populations, thus being unsuitable for assessing individual cell
behaviors in response to external stimulations. In the last years, great interest has thus been focused on single
cell analysis and screening, which represents a promising tool aiming at pursuing the direct and deterministic
control over cause-effect relationships guiding cell behavior. In this regard, a high-throughput microfluidic
platform for trapping and culturing adherent single cells was presented. A single cell trapping mechanism
was implemented based on dynamic variation of fluidic resistances. A round-shaped culture chamber
(Φ=250μm, h=25μm) was conceived presenting two connections with a main fluidic path: (i) an upper wide
opening, and (ii) a bottom trapping junction which modulates the hydraulic resistance. Several layouts of the
chamber were designed and computationally validated for the optimization of the single cell trapping
efficacy. The optimized chamber layouts were integrated in a polydimethylsiloxane (PDMS) microfluidic
platform presenting two main functionalities: (i) 288 chambers for trapping single cells, and (ii) a chaoticmixer
based serial dilution generator for delivering both soluble factors and non-diffusive molecules under
spatio-temporally controlled chemical patterns. The devices were experimentally validated and allowed for
trapping individual U87-MG (human glioblastoma-astrocytoma epithelial-like) cells and culturing them up to
3 days
Recommended from our members
Lab-on-Chip for Testing Myelotoxic Effect of Drugs and Chemicals
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.In the last twenty years, one of the main goals in the drug discovery field has been the development
of reliable in vitro models. In particular, in 2006 the European Centre for the Validation of Alternative
Methods (ECVAM) has approved the Colony forming Unit-Granulocytes-Macrophages (CFU-GM) test,
which is the first and currently unique test applied to evaluate the myelotoxicity of xenobiotics in vitro. The
present work aimed at miniaturizing this in vitro assay by developing and validating a Lab-on-Chip (LoC)
platform consisting of a high number of bioreactor chambers with screening capabilities in a high-throughput
regime
High-throughput microfluidic platform for adherent single cells non-viral gene delivery
The widespread use of gene therapy as a therapeutic tool relies on the development of DNA-carrying vehicles devoid of any safety concerns. In contrast to viral vectors, non-viral gene carriers show promise in this perspective, although their low transfection efficiency leads to the necessity to carry out further optimizations. In order to overcome the limitations of traditional macroscale approaches, which mainly consist of time-consuming and simplified models, a microfluidic strategy has been developed to carry out transfection studies on single cells in a high-throughput and deterministic fashion. A single cell trapping mechanism has been implemented, based on the dynamic variation of fluidic resistances. For this purpose, we designed a round-shaped culture chamber integrated with a bottom trapping junction, which modulates the hydraulic resistance. Several layouts of the chamber were designed and computationally validated for optimization of the single cell trapping efficacy. The optimized chamber layout was integrated in a polydimethylsiloxane (PDMS) microfluidic platform presenting two main functionalities: (i) 288 chambers for trapping single cells, and (ii) a serial dilution generator with chaotic mixing properties, able to deliver to the chambers both soluble factors and non-diffusive particles (i.e., polymer/DNA complexes, polyplexes) under spatio-temporally controlled chemical patterns. The devices were experimentally validated and allowed the trapping of individual human glioblastoma–astrocytoma epithelial-like cells (U87-MG) with a trapping efficacy of about 40%. The cells were cultured within the device and underwent preliminary transfection experiments using 25 kDa linear polyethylenimine (lPEI)-based polyplexes, confirming the potentiality of the proposed platform for the future high-throughput screening of gene delivery vectors and for the optimization of transfection protocols
Burkitt lymphoma beyond MYC translocation: N-MYC and DNA methyltransferases dysregulation
Background: The oncogenic transcription factor MYC is pathologically activated in many human malignancies. A paradigm for MYC dysregulation is offered by Burkitt lymphoma, where chromosomal translocations leading to Immunoglobulin gene-MYC fusion are the crucial initiating oncogenic events. However, Burkitt lymphoma cases with no detectable MYC rearrangement but maintaining MYC expression have been identified and alternative mechanisms can be involved in MYC dysregulation in these cases. Methods: We studied the microRNA profile of MYC translocation-positive and MYC translocation-negative Burkitt lymphoma cases in order to uncover possible differences at the molecular level. Data was validated at the mRNA and protein level by quantitative Real-Time polymerase chain reaction and immunohistochemistry, respectively. Results: We identified four microRNAs differentially expressed between the two groups. The impact of these microRNAs on the expression of selected genes was then investigated. Interestingly, in MYC translocation-negative cases we found over-expression of DNA-methyl transferase family members, consistent to hypo-expression of the hsa-miR-29 family. This finding suggests an alternative way for the activation of lymphomagenesis in these cases, based on global changes in methylation landscape, aberrant DNA hypermethylation, lack of epigenetic control on transcription of targeted genes, and increase of genomic instability. In addition, we observed an over-expression of another MYC family gene member, MYCN that may therefore represent a cooperating mechanism of MYC in driving the malignant transformation in those cases lacking an identifiable MYC translocation but expressing the gene at the mRNA and protein levels. Conclusions: Collectively, our results showed that MYC translocation-positive and MYC translocation-negative Burkitt lymphoma cases are slightly different in terms of microRNA and gene expression. MYC translocation-negative Burkitt lymphoma, similarly to other aggressive B-cell non Hodgkin's lymphomas, may represent a model to understand the intricate molecular pathway responsible for MYC dysregulation in cancer
Water exercises and quality of life during pregnancy
<p>Abstract</p> <p>Background</p> <p>In Brazil, concern with the quality of life of pregnant women is one of the points emphasized in the Program for the Humanization of Prenatal Care and Childbirth launched in 2000. However, there are few references in the literature on the role of either land or water-based physical exercise on women's quality of life during pregnancy. The purpose of this study was to evaluate the effects of a physical exercise program of water aerobics on the quality of life (QOL) of sedentary pregnant women.</p> <p>Methods</p> <p>A comparative observational study involving sedentary low-risk pregnant women bearing a single fetus with gestational age less than 20 weeks at the time of admission to the study, who were receiving antenatal care at a public health service. One group of 35 women was given routine antenatal care, while another group of 31 women, in addition to receiving the same routine care as the first group, also participated in three classes of water aerobics per week. QOL was evaluated by applying the WHOQOL-BREF questionnaire in both groups at the 20<sup>th</sup>, 28<sup>th </sup>and 36<sup>th </sup>weeks of pregnancy. In the same occasions, women also answered another questionnaire about their experience with pregnancy and antenatal care.</p> <p>Results</p> <p>The great majority of the participants considered that the practice of water aerobics had benefitted them in some way. QOL scores were found to be high in both groups during follow-up. There was no association between the practice of water aerobics and QOL.</p> <p>Conclusions</p> <p>Further studies involving larger sample sizes should be conducted in different sociocultural contexts and/or using other instruments to adequately evaluate the QOL of women during pregnancy.</p
Avaliação da lordose lombar e sua relação com a dor lombopélvica em gestantes
O objetivo deste trabalho foi avaliar a magnitude da lordose lombar, sua influência na dor lombopélvica e a qualidade de vida em gestantes. Para tal, foi realizado um estudo com 20 mulheres não gestantes (C) e 13 gestantes ao longo dos trimestres gestacionais (G1, G2 e G3). Todas as mulheres foram submetidas à avaliação inicial para registro dos dados pessoais, hábitos de vida, antecedentes pessoais, uso de medicamentos, história ginecológica e obstétrica. Posteriormente, as voluntárias do grupo controle foram avaliadas uma vez e as gestantes foram avaliadas em três momentos distintos, no 10, 20 e 30 trimestres gestacionais. A avaliação do grau de lordose lombar foi realizada por meio de técnica fotogramétrica; a avaliação de locais de dor, o tipo de dor e sua intensidade foram feitas por meio do Questionário McGill de dor; e a avaliação da qualidade de vida foi feita pelo Questionário WHOQOL-bref. Neste trabalho, não foi possível observar padrão de alteração da curvatura lombar no decorrer da gestação. Também não foi observada relação entre a curvatura lombar e a dor lombopélvica relacionada à gestação.The purpose of this study was to evaluate the magnitude of lumbar lordosis, its influence on lumbopelvic pain and quality of life in pregnant women. To this end, a study was done with 20 non-pregnant women (C) and 13 pregnant women during the trimesters of pregnancy (G1, G2 and G3). All women underwent initial assessment for registration of personal data, lifestyle, personal history, medications, gynecological and obstetric history. Later, the volunteers in the control group were evaluated once and pregnant women were evaluated at three different times, the first, second and third trimesters of pregnancy. The evaluation of the degree of lumbar lordosis was performed by a photogrammetric technique. The assessment of points/places of pain, the kind of pain and its intensity were made by McGill Pain Questionnaire, and the quality of life assessment was made by WHOQOL-bref. In this study, it was not possible to observe a pattern of change in lumbar curvature during pregnancy. There was also no relationship between lumbar curvature and lumbopelvic pain related to pregnancy