48 research outputs found
Red Supergiants as Cosmic Abundance Probes: massive star clusters in M83, and the mass-metallicity relation of nearby galaxies
We present an abundance analysis of seven super-star clusters in the disk of M83. The near-infrared spectra of these clusters are dominated by Red Supergiants, and the spectral similarity in the J-band of such stars at uniform metallicity means that the integrated light from the clusters may be analysed using the same tools as those applied to single stars. Using data from VLT/KMOS we estimate metallicities for each cluster in the sample. We find that the abundance gradient in the inner regions of M83 is flat, with a central metallicity of [Z] = 0.210.11 relative to a Solar value of =0.014, which is in excellent agreement with the results from an analysis of luminous hot stars in the same regions. Compiling this latest study with our other recent work, we construct a mass-metallicity relation for nearby galaxies based entirely on the analysis of RSGs. We find excellent agreement with the other stellar-based technique, that of blue supergiants, as well as with temperature-sensitive (`auroral' or `direct') \hii-region studies. Of all the HII-region strong-line calibrations, those which are empirically calibrated to direct-method studies (N2 and O3N2) provide the most consistent results
Studying the YMC population of M83: how long clusters remain embedded, their interaction with the ISM and implications for GC formation theories
The study of young massive clusters can provide key information for the formation of globular clusters, as they are often considered analogues. A currently unanswered question in this field is how long these massive clusters remain embedded in their natal gas, with important implications for the formation of multiple populations that have been used to explain phenomena observed in globular clusters. We present an analysis of ages and masses of the young massive cluster population of M83. Through visual inspection of the clusters, and comparison of their spectral energy distributions (SEDs) and position in colour–colour space, the clusters are all exposed (no longer embedded) by <4 Myr, most likely less, indicating that current proposed age spreads within older clusters are unlikely. We also present several methods of constraining the ages of very young massive clusters. This can often be difficult using SED fitting due to a lack of information to disentangle age–extinction degeneracies and possible inaccurate assumptions in the models used for the fitting. The individual morphology of the Hα around each cluster has a significant effect on the measured fluxes, which contributes to inaccuracies in the age estimates for clusters younger than 10 Myr using SED fitting. This is due to model uncertainties and aperture effects. Our methods to help constrain ages of young clusters include using the near-infrared and spectral features, such as Wolf–Rayet stars
RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE MAGELLANIC CLOUDS
Red Supergiants (RSGs) are cool (∼ 4000K), highly luminous stars (L ∼ 105L⊙), and are among the
brightest near-infrared (NIR) sources in star-forming galaxies. This makes them powerful probes of
the properties of their host galaxies, such as kinematics and chemical abundances. We have developed
a technique whereby metallicities of RSGs may be extracted from a narrow spectral window around
1μm from only moderate resolution data. The method is therefore extremely efficient, allowing stars
at large distances to be studied, and so has tremendous potential for extragalactic abundance work.
Here, we present an abundance study of the Large and Small Magellanic Clouds (LMC and SMC
respectively) using samples of 9-10 RSGs in each. We find average abundances for the two galaxies of
[Z]LMC = −0.37±0.14 and [Z]SMC = −0.53±0.16 (with respect to a Solar metallicity of Z⊙=0.012).
These values are consistent with other studies of young stars in these galaxies, and though our result for
the SMC may appear high it is consistent with recent studies of hot stars which find 0.5-0.8dex below
Solar. Our best-fit temperatures are on the whole consistent with those from fits to the optical-infrared spectral energy distributions, which is remarkable considering the narrow spectral range being studied.
Combined with our recent study of RSGs in the Galactic cluster Per OB1, these results indicate that
this technique performs well over a range of metallicities, paving the way for forthcoming studies of
more distant galaxies beyond the Local Group
Progressive hemorrhage and myotoxicity induced by echis carinatus venom in murine model: neutralization by inhibitor cocktail of n,n,n `,n `-tetrakis (2-pyridylmethyl) ethane-1,2-diamine and silymarin
Viperbite is often associated with severe local toxicity, including progressive hemorrhage and myotoxicity, persistent even after the administration of anti-snake venom (ASV). In the recent past, investigations have revealed the orchestrated actions of Zn2+ metalloproteases (Zn(2+)MPs), phospholipase A(2)s (PLA(2)s) and hyaluronidases (HYs) in the onset and progression of local toxicity from the bitten site. As a consequence, venom researchers and medical practitioners are in deliberate quest of potent molecules alongside ASV to tackle the brutal local manifestations induced by aforesaid venom toxins. Based on these facts, we have demonstrated the protective efficacy of inhibitor cocktail containing equal ratios of N,N,N', N'-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and silymarin (SLN) against progressive local toxicity induced by Echis carinatus venom (ECV). In our previous study we have shown the inhibitory potentials of TPEN towards Zn(2+)MPs of ECV (IC50: 6.7 mu M). In this study we have evaluated in vitro inhibitory potentials of SLN towards PLA(2)s (IC50: 12.5 mu M) and HYs (IC50: 8 mu M) of ECV in addition to docking studies. Further, we have demonstrated the protection of ECV induced local toxicity with 10 mM inhibitor cocktail following 15, 30 min (for hemorrhage and myotoxicity); 60 min (for hemorrhage alone) of ECV injection in murine model. The histological examination of skin and thigh muscle sections taken out from the site of ECV injection substantiated the overall protection offered by inhibitor cocktail. In conclusion, the protective efficacy of inhibitor cocktail is of high interest and can be administered locally alongside ASV to treat severe local toxicity
Red supergiants as cosmic abundance probes
The chemical abundances of galaxies provide key constraints to models of their formation and evolution. Unfortunately, the standard method of determining abundances, from the strong emission lines of Hi
Quantitative spectroscopy of blue supergiant stars in the disk of M81: metallicity, metallicity gradient, and distance
The quantitative spectral analysis of low resolution Keck LRIS spectra of
blue supergiants in the disk of the giant spiral galaxy M81 is used to
determine stellar effective temperatures, gravities, metallicities,
luminosites, interstellar reddening and a new distance using the Flux-weighted
Gravity--Luminosity Relationship (FGLR). Substantial reddening and extinction
is found with E(B-V) ranging between 0.13 to 0.38 mag and an average value of
0.26 mag. The distance modulus obtained after individual reddening corrections
is 27.7+/-0.1 mag. The result is discussed with regard to recently measured
TRGB and Cepheid distances. The metallicities (based on elements such as iron,
titanium, magnesium) are supersolar (~0.2 dex) in the inner disk (R<=5kpc) and
slightly subsolar (~ -0.05 dex) in the outer disk (R>10 kpc) with a shallow
metallicity gradient of 0.034 dex/kpc. The comparison with published oxygen
abundances of planetary nebulae and metallicities determined through fits of
HST color-magnitude diagrams indicates a late metal enrichment and a flattening
of the abundance gradient over the last 5 Gyrs. This might be the result of gas
infall from metal rich satellite galaxies. Combining these M81 metallicities
with published blue supergiant abundance studies in the Local Group and the
Sculptor Group a galaxy mass metallicity-relationship based solely on stellar
spectroscopic studies is presented and compared with recent studies of SDSS
star forming galaxies.Comment: 60 pages, 17 figures, Accepted for publication by Ap
RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES. III. NLTE EFFECTS IN J-BAND MAGNESIUM LINES
Non-local thermodynamic equilibrium (NLTE) calculations for Mg i in red supergiant stellar atmospheres are presented to investigate the importance of NLTE for the formation of Mg i lines in the NIR J-band. Recent work using medium resolution spectroscopy of atomic lines in the J-band of individual red supergiant stars has demonstrated this technique is a very promising tool for investigating the chemical composition of the young stellar population in star forming galaxies. As in previous work, where NLTE effects were studied for iron, titanium, and silicon, substantial effects are found resulting in significantly stronger Mg i absorption lines. For the quantitative spectral analysis the NLTE effects lead to magnesium abundances significantly smaller than in local thermodynamic equilibrium with the NLTE abundance corrections varying smoothly between −0.4 dex and −0.1 dex for effective temperatures between 3400 and 4400 K. We discuss the physical reasons of the NLTE effects and the consequences for extragalactic J-band abundance studies using individual red supergiants in the young massive galactic double cluster h and χ Persei