57 research outputs found

    A Phase I trial of talazoparib in patients with advanced hematologic malignancies

    Get PDF
    Aim: The objective of this study was to establish the maximum tolerated dose (MTD), safety, pharmacokinetics, and anti-leukemic activity of talazoparib. Patients & methods: This Phase I, two-cohort, dose-escalation trial evaluated talazoparib monotherapy in advanced hematologic malignancies (cohort 1: acute myeloid leukemia/myelodysplastic syndrome; cohort 2: chronic lymphocytic leukemia/mantle cell lymphoma). Results: Thirty-three (cohort 1: n = 25; cohort 2: n = 8) patients received talazoparib (0.1-2.0 mg once daily). The MTD was exceeded at 2.0 mg/day in cohort 1 and at 0.9 mg/day in cohort 2. Grade ≥3 adverse events were primarily hematologic. Eighteen (54.5%) patients reported stable disease. Conclusion: Talazoparib is relatively well tolerated in hematologic malignancies, with a similar MTD as in solid tumors, and shows preliminary anti leukemic activity.Clinical trial registration: NCT01399840 (ClinicalTrials.gov)

    Small PARP inhibitor PJ-34 induces cell cycle arrest and apoptosis of adult T-cell leukemia cells

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author’s publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Background HTLV-I is associated with the development of an aggressive form of lymphocytic leukemia known as adult T-cell leukemia/lymphoma (ATLL). A major obstacle for effective treatment of ATLL resides in the genetic diversity of tumor cells and their ability to acquire resistance to chemotherapy regimens. As a result, most patients relapse and current therapeutic approaches still have limited long-term survival benefits. Hence, the development of novel approaches is greatly needed. Methods In this study, we found that a small molecule inhibitor of poly (ADP-ribose) polymerase (PARP), PJ-34, is very effective in activating S/G2M cell cycle checkpoints, resulting in permanent cell cycle arrest and reactivation of p53 transcription functions and caspase-3-dependent apoptosis of HTLV-I-transformed and patient-derived ATLL tumor cells. We also found that HTLV-I-transformed MT-2 cells are resistant to PJ-34 therapy associated with reduced cleaved caspase-3 activation and increased expression of RelA/p65. Conclusion Since PJ-34 has been tested in clinical trials for the treatment of solid tumors, our results suggest that some ATLL patients may be good candidates to benefit from PJ-34 therapy

    Vorinostat Induces Reactive Oxygen Species and DNA Damage in Acute Myeloid Leukemia Cells

    Get PDF
    Histone deacetylase inhibitors (HDACi) are promising anti-cancer agents, however, their mechanisms of action remain unclear. In acute myeloid leukemia (AML) cells, HDACi have been reported to arrest growth and induce apoptosis. In this study, we elucidate details of the DNA damage induced by the HDACi vorinostat in AML cells. At clinically relevant concentrations, vorinostat induces double-strand breaks and oxidative DNA damage in AML cell lines. Additionally, AML patient blasts treated with vorinostat display increased DNA damage, followed by an increase in caspase-3/7 activity and a reduction in cell viability. Vorinostat-induced DNA damage is followed by a G2-M arrest and eventually apoptosis. We found that pre-treatment with the antioxidant N-acetyl cysteine (NAC) reduces vorinostat-induced DNA double strand breaks, G2-M arrest and apoptosis. These data implicate DNA damage as an important mechanism in vorinostat-induced growth arrest and apoptosis in both AML cell lines and patient-derived blasts. This supports the continued study and development of vorinostat in AMLs that may be sensitive to DNA-damaging agents and as a combination therapy with ionizing radiation and/or other DNA damaging agents

    Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors

    Get PDF
    Acute myeloid leukemia (AML) is mostly driven by oncogenic transcription factors, which have been classically viewed as intractable targets using small molecule inhibitor approaches. Here, we demonstrate that AML driven by repressive transcription factors including AML1-ETO and PML-RARα are extremely sensitive to Poly (ADP-ribose) Polymerase (PARP) inhibitor (PARPi), in part due to their suppressed expression of key homologous recombination genes and thus compromised DNA damage response (DDR). In contrast, leukemia driven by MLL fusions with dominant transactivation ability is proficient in DDR and insensitive to PARP inhibition. Intriguing, depletion of an MLL downstream target, Hoxa9 that activates expression of various HR genes, impairs DDR and sensitizes MLL leukemia to PARPi. Conversely, Hoxa9 over-expression confers PARPi resistance to AML1-ETO and PML-RARα transformed cells. Together, these studies describe a potential utility of PARPi-induced synthetic lethality for leukemia treatment and reveal a novel molecular mechanism governing PARPi sensitivity in AML

    Natural functions and specific uses of prolyl isomerases

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN015393 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Myeloid leukemias have increased activity of the nonhomologous end-joining pathway and concomitant DNA misrepair that is dependent on the Ku70/86 heterodimer

    No full text
    Human myeloid leukemias are characterized by chromosomal abnormalities, including translocations, deletions, and allelic loss. These alterations are known to disrupt the function of genes that contribute to tumor initiation and progression. The mechanism underlying the appearance of these chromosomal alterations is poorly understood. Recent evidence suggests that altered nonhomologous end joining (NHEJ) is associated with the incidence of chromosome abnormalities in mutant rodent cells. This pathway is thought to provide a major mechanism for the repair of double-strand breaks (DSB) in higher eukaryotes. Here, we show that in an in vitro assay for DSB end ligation, nuclear extracts prepared from cultured and primary myeloid leukemia cells show a 2-7-fold increase in end-ligation efficiency as compared with mobilized peripheral CD34+ blood progenitor cells (CD34+) and interleukin-2-stimulated peripheral blood lymphocytes from normal healthy donors (P < 0.001). Furthermore, using an in vitro plasmid LacZ gene reactivation assay to determine DSB repair fidelity, nuclear extracts prepared from myeloid leukemia cells showed an increased frequency of misrepair compared with normal control cells (P < 0.001). Most importantly, this misrepair in myeloid leukemia cells is associated with large deletions (30-400 bp) within the test plasmids used in our assay. These deletions were not observed using normal hematopoietic cells (<28 bp). Strikingly, we show that the NHEJ proteins, Ku70 and 86, are required for the deletions in myeloid leukemias because preincubating nuclear extracts from leukemic cells with antisera against Ku86 and Ku70 inhibits plasmid reactivation and restores the frequency and size of deletions to control levels. Our findings suggest that an overactive NHEJ system and, specifically, aberrant Ku70/86 activity is a candidate mechanism for chromosomal instability in myeloid leukemias
    • …
    corecore