17 research outputs found

    NaV1.1 Channels in Axon Initial Segments of Bipolar Cells Augment Input to Magnocellular Visual Pathways in the Primate Retina

    Full text link
    In the primate visual system, the ganglion cells of the magnocellular pathway underlie motion and flicker detection and are relatively transient, while the more sustained ganglion cells of the parvocellular pathway have comparatively lower temporal resolution, but encode higher spatial frequencies. Although it is presumed that functional differences in bipolar cells contribute to the tuning of the two pathways, the properties of the relevant bipolar cells have not yet been examined in detail. Here, by making patch-clamp recordings in acute slices of macaque retina, we show that the bipolar cells within the magnocellular pathway, but not the parvocellular pathway, exhibit voltage-gated sodium (Na(V)), T-type calcium (Ca(V)), and hyperpolarization-activated, cyclic nucleotide-gated (HCN) currents, and can generate action potentials. Using immunohistochemistry in macaque and human retinae, we show that Na(V)1.1 is concentrated in an axon initial segment (AIS)-like region of magnocellular pathway bipolar cells, a specialization not seen in transient bipolar cells of other vertebrates. In contrast, Ca(V)3.1 channels were localized to the somatodendritic compartment and proximal axon, but were excluded from the AIS, while HCN1 channels were concentrated in the axon terminal boutons. Simulations using a compartmental model reproduced physiological results and indicate that magnocellular pathway bipolar cells initiate spikes in the AIS. Finally, we demonstrate that Na(V) channels in bipolar cells augment excitatory input to parasol ganglion cells of the magnocellular pathway. Overall, the results demonstrate that selective expression of voltage-gated channels contributes to the establishment of parallel processing in the major visual pathways of the primate retina

    Alterations in Kainate Receptor and TRPM1 Localization in Bipolar Cells after Retinal Photoreceptor Degeneration

    Get PDF
    Photoreceptor degeneration differentially impacts glutamatergic signaling in downstream On and Off bipolar cells. In rodent models, photoreceptor degeneration leads to loss of glutamatergic signaling in On bipolar cells, whereas Off bipolar cells appear to retain glutamate sensitivity, even after extensive photoreceptor loss. The localization and identity of the receptors that mediate these residual glutamate responses in Off bipolar cells have not been determined. Recent studies show that macaque and mouse Off bipolar cells receive glutamatergic input primarily through kainate-type glutamate receptors. Here, we studied the impact of photoreceptor degeneration on glutamate receptor associated proteins in Off and On bipolar cells. We show that the kainate receptor subunit, GluK1, persists in remodeled Off bipolar cell dendrites of the rd10 mouse retina. However, the pattern of expression is altered and the intensity of staining is reduced compared to wild-type retina. The kainate receptor auxiliary subunit, Neto1, also remains in Off bipolar cell dendrites after complete photoreceptor degeneration. Similar preservation of kainate receptor subunits was evident in human retina in which photoreceptors had degenerated due to serous retinal detachment. In contrast, photoreceptor degeneration leads to loss of synaptic expression of TRPM1 in mouse and human On bipolar cells, but strong somatic expression remains. These findings demonstrate that Off bipolar cells retain dendritic glutamate receptors during retinal degeneration and could thus serve as a conduit for signal transmission from transplanted or optogenetically-restored photoreceptors

    Localization of the calcium-binding protein secretagogin in cone bipolar cells of the mammalian retina.

    No full text
    Secretagogin, a recently cloned member of the EF-hand family of calcium binding proteins, was localized in the mouse, rat, and rabbit retina using immunofluorescence immunohistochemistry. Secretagogin is expressed in subpopulations of ON and OFF cone bipolar cells; however, no immunoreactivity was observed in rod bipolar cells in any of these species. Using subtype-specific markers and mice expressing green fluorescent protein (GFP) within specific cell classes, we found that secretagogin is expressed in Types 2, 3, 4, 5, 6 and possibly Type 8 cone bipolar cells in the mouse retina. The expression pattern in the rat retina differs slightly with expression in cone bipolar cell Types 2, 5, 6, 7, and 8. Evaluation of secretagogin in the developing mouse retina revealed expression as early as postnatal day 6, with OFF cone bipolar cells showing secretagogin expression prior to the ON cone bipolar cells. Secretagogin is a useful marker of cone bipolar cells for studying alterations in bipolar cell morphology during development and degeneration. Further work will be necessary to elucidate the functional role of this protein in bipolar cells

    Immunohistochemical identification and synaptic inputs to the diffuse bipolar cell type DB1 in macaque retina.

    No full text
    Detailed analysis of the synaptic inputs to the primate DB1 bipolar cell has been precluded by the absence of a suitable immunohistochemical marker. Here we demonstrate that antibodies for the EF-hand calcium-binding protein, secretagogin, strongly label the DB1 bipolar cell as well as a mixed population of GABAergic amacrine cells in the macaque retina. Using secretagogin as a marker, we show that the DB1 bipolar makes synaptic contact with both L/M as well as S-cone photoreceptors and only minimal contact with rod photoreceptors. Electron microscopy showed that the DB1 bipolar makes flat contacts at both triad-associated and nontriad-associated positions on the cone pedicle. Double labeling with various glutamate receptor subunit antibodies failed to conclusively determine the subunit composition of the glutamate receptors on DB1 bipolar cells. In the IPL, DB1 bipolar cell axon terminals expressed the glycine receptor, GlyRα1, at sites of contact with AII amacrine cells, suggesting that these cells receive input from the rod pathway
    corecore