1,220 research outputs found
Concurrent ionic migration and electronic effects at the memristive TiOx/La1/3Ca2/3MnO3-x interface
The development of reliable redox-based resistive random-access memory devices requires understanding and disentangling concurrent effects present at memristive interfaces. We report on the fabrication and electrical characterization of TiOx/La1/3Ca2/3MnO3-x microstructured interfaces and on the modeling of their memristive behavior. We show that a careful tuning of the applied external electrical stimuli allows controlling the redox process between both layers, obtaining multilevel non-volatile resistance states. We simulate the oxygen vacancies dynamics at the interface between both oxides, and successfully reproduce the experimental electrical behavior after the inclusion of an electronic effect, related to the presence of an n-p diode at the interface. The formation of the diode is due to the n- and p-character of TiOx and La1/3Ca2/3MnO3-x, respectively. Our analysis indicates that oxygen vacancies migration between both layers is triggered after the diode is polarized either in forward mode or in reverse mode above breakdown. Electrical measurements at different temperatures suggest that the diode can be characterized as Zener-type. The advantages of our junctions for their implementation in RRAM devices are finally discussed.Fil: Roman Acevedo, Wilson Stibens. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Ferreyra, Cristian Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Sánchez, M.J.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Acha, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Gay, R.. Centro de Investigación Cooperativo nanoGUNE; EspañaFil: Rubi, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentin
A first principles study of sub-monolayer Ge on Si(001)
Experimental observations of heteroepitaxial growth of Ge on Si(001) show a
(2xn) reconstruction for sub-monolayer coverages, with dimer rows crossed by
missing-dimer trenches. We present first-principles density-functional
calculations designed to elucidate the energetics and relaxed geometries
associated with this reconstruction. We also address the problem of how the
formation energies of reconstructions having different stoichiometries should
be compared. The calculations reveal a strong dependence of the formation
energy of the missing-dimer trenches on spacing n, and demonstrate that this
dependence stems almost entirely from elastic relaxation. The results provide a
natural explanation for the experimentally observed spacings in the region of n
\~ 8.Comment: 13 pages, 4 figures, submitted to Surface Scienc
Stress response inside perturbed particle assemblies
The effect of structural disorder on the stress response inside three
dimensional particle assemblies is studied using computer simulations of
frictionless sphere packings. Upon applying a localised, perturbative force
within the packings, the resulting {\it Green's} function response is mapped
inside the different assemblies, thus providing an explicit view as to how the
imposed perturbation is transmitted through the packing. In weakly disordered
arrays, the resulting transmission of forces is of the double-peak variety, but
with peak widths scaling linearly with distance from the source of the
perturbation. This behaviour is consistent with an anisotropic elasticity
response profile. Increasing the disorder distorts the response function until
a single-peak response is obtained for fully disordered packings consistent
with an isotropic description.Comment: 8 pages, 7 figure captions To appear in Granular Matte
Classical Evolution of Quantum Elliptic States
The hydrogen atom in weak external fields is a very accurate model for the
multiphoton excitation of ultrastable high angular momentum Rydberg states, a
process which classical mechanics describes with astonishing precision. In this
paper we show that the simplest treatment of the intramanifold dynamics of a
hydrogenic electron in external fields is based on the elliptic states of the
hydrogen atom, i.e., the coherent states of SO(4), which is the dynamical
symmetry group of the Kepler problem. Moreover, we also show that classical
perturbation theory yields the {\it exact} evolution in time of these quantum
states, and so we explain the surprising match between purely classical
perturbative calculations and experiments. Finally, as a first application, we
propose a fast method for the excitation of circular states; these are
ultrastable hydrogenic eigenstates which have maximum total angular momentum
and also maximum projection of the angular momentum along a fixed direction. %Comment: 8 Pages, 2 Figures. Accepted for publication in Phys. Rev.
Modeling DNA Structure, Elasticity and Deformations at the Base-pair Level
We present a generic model for DNA at the base-pair level. We use a variant
of the Gay-Berne potential to represent the stacking energy between neighboring
base-pairs. The sugar-phosphate backbones are taken into account by semi-rigid
harmonic springs with a non-zero spring length. The competition of these two
interactions and the introduction of a simple geometrical constraint leads to a
stacked right-handed B-DNA-like conformation. The mapping of the presented
model to the Marko-Siggia and the Stack-of-Plates model enables us to optimize
the free model parameters so as to reproduce the experimentally known
observables such as persistence lengths, mean and mean squared base-pair step
parameters. For the optimized model parameters we measured the critical force
where the transition from B- to S-DNA occurs to be approximately . We
observe an overstretched S-DNA conformation with highly inclined bases that
partially preserves the stacking of successive base-pairs.Comment: 15 pages, 25 figures. submitted to PR
A Successful Broad-band Survey for Giant Lya Nebulae I: Survey Design and Candidate Selection
Giant Lya nebulae (or Lya "blobs") are likely sites of ongoing massive galaxy
formation, but the rarity of these powerful sources has made it difficult to
form a coherent picture of their properties, ionization mechanisms, and space
density. Systematic narrow-band Lya nebula surveys are ongoing, but the small
redshift range covered and the observational expense limit the comoving volume
that can be probed by even the largest of these surveys and pose a significant
problem when searching for such rare sources. We have developed a systematic
search technique designed to find large Lya nebulae at 2<z<3 within deep
broad-band imaging and have carried out a survey of the 9.4 square degree NOAO
Deep Wide-Field Survey (NDWFS) Bootes field. With a total survey comoving
volume of ~10^8 h^-3_70 Mpc^3, this is the largest volume survey for Lya
nebulae ever undertaken. In this first paper in the series, we present the
details of the survey design and a systematically-selected sample of 79
candidates, which includes one previously discovered Lya nebula.Comment: Accepted to ApJ after minor revision; 25 pages in emulateapj format;
18 figures, 3 table
Role of targeted therapies in rheumatic patients on COVID-19 outcomes: Results from the COVIDSER study
Objectives To analyse the effect of targeted therapies, either biological (b) disease-modifying antirheumatic drugs (DMARDs), targeted synthetic (ts) DMARDs and other factors (demographics, comorbidities or COVID-19 symptoms) on the risk of COVID-19 related hospitalisation in patients with inflammatory rheumatic diseases. Methods The COVIDSER study is an observational cohort including 7782 patients with inflammatory rheumatic diseases. Multivariable logistic regression was used to estimate ORs and 95% CIs of hospitalisation. Antirheumatic medication taken immediately prior to infection, demographic characteristics, rheumatic disease diagnosis, comorbidities and COVID-19 symptoms were analysed. Results A total of 426 cases of symptomatic COVID-19 from 1 March 2020 to 13 April 2021 were included in the analyses: 106 (24.9%) were hospitalised and 19 (4.4%) died. In multivariate-adjusted models, bDMARDs and tsDMARDs in combination were not associated with hospitalisation compared with conventional synthetic DMARDs (OR 0.55, 95% CI 0.24 to 1.25 of b/tsDMARDs, p=0.15). Tumour necrosis factor inhibitors (TNF-i) were associated with a reduced likelihood of hospitalisation (OR 0.32, 95% CI 0.12 to 0.82, p=0.018), whereas rituximab showed a tendency to an increased risk of hospitalisation (OR 4.85, 95% CI 0.86 to 27.2). Glucocorticoid use was not associated with hospitalisation (OR 1.69, 95% CI 0.81 to 3.55). A mix of sociodemographic factors, comorbidities and COVID-19 symptoms contribute to patients'' hospitalisation. Conclusions The use of targeted therapies as a group is not associated with COVID-19 severity, except for rituximab, which shows a trend towards an increased risk of hospitalisation, while TNF-i was associated with decreased odds of hospitalisation in patients with rheumatic disease. Other factors like age, male gender, comorbidities and COVID-19 symptoms do play a role.
Quantum walks: a comprehensive review
Quantum walks, the quantum mechanical counterpart of classical random walks,
is an advanced tool for building quantum algorithms that has been recently
shown to constitute a universal model of quantum computation. Quantum walks is
now a solid field of research of quantum computation full of exciting open
problems for physicists, computer scientists, mathematicians and engineers.
In this paper we review theoretical advances on the foundations of both
discrete- and continuous-time quantum walks, together with the role that
randomness plays in quantum walks, the connections between the mathematical
models of coined discrete quantum walks and continuous quantum walks, the
quantumness of quantum walks, a summary of papers published on discrete quantum
walks and entanglement as well as a succinct review of experimental proposals
and realizations of discrete-time quantum walks. Furthermore, we have reviewed
several algorithms based on both discrete- and continuous-time quantum walks as
well as a most important result: the computational universality of both
continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing
Journa
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
- …