6,737 research outputs found
Numerical modeling of troposphere-induced gravity wave propagation
Sources of internal gravity waves (IGW) in the upper atmosphere are assumed to be meteorological processes in the troposphere. These sources are vertically and horizontally inhomogeneous and time dependent. In order to describe the IGW propagation from such sources, a numerical solution of a system of hydrodynamical equations is required. In addition, it is necessary to take into account the influence of the altitude latitude inhomogeneity of the temperature and wind fields on the IGW propagation as well as the processes of dissipation. An algorithm is proposed for numerical modelling of the IGW propagation over a limited area from tropospheric local sources to the upper atmosphere. The algorithm takes into account all the above features. A spectral grid method is used with the expansion of wave fields into the Fourier series over longitude. The upper limit conditions were obtained from the requirement of a limited energy dissipation rate in an atmospheric column. The no slip (zero velocity) condition was used at the Earth's surface
One-loop energy-momentum tensor in QED with electric-like background
We have obtained nonperturbative one-loop expressions for the mean
energy-momentum tensor and current density of Dirac's field on a constant
electric-like background. One of the goals of this calculation is to give a
consistent description of back-reaction in such a theory. Two cases of initial
states are considered: the vacuum state and the thermal equilibrium state.
First, we perform calculations for the vacuum initial state. In the obtained
expressions, we separate the contributions due to particle creation and vacuum
polarization. The latter contributions are related to the Heisenberg-Euler
Lagrangian. Then, we study the case of the thermal initial state. Here, we
separate the contributions due to particle creation, vacuum polarization, and
the contributions due to the work of the external field on the particles at the
initial state. All these contributions are studied in detail, in different
regimes of weak and strong fields and low and high temperatures. The obtained
results allow us to establish restrictions on the electric field and its
duration under which QED with a strong constant electric field is consistent.
Under such restrictions, one can neglect the back-reaction of particles created
by the electric field. Some of the obtained results generalize the calculations
of Heisenberg-Euler for energy density to the case of arbitrary strong electric
fields.Comment: 35 pages; misprints in the sign in definitions (40)-(43), and (68)
corrected, results unchange
Integration of D-dimensional 2-factor spaces cosmological models by reducing to the generalized Emden-Fowler equation
The D-dimensional cosmological model on the manifold describing the evolution of 2 Einsteinian factor spaces,
and , in the presence of multicomponent perfect fluid source is
considered. The barotropic equation of state for mass-energy densities and the
pressures of the components is assumed in each space. When the number of the
non Ricci-flat factor spaces and the number of the perfect fluid components are
both equal to 2, the Einstein equations for the model are reduced to the
generalized Emden-Fowler (second-order ordinary differential) equation, which
has been recently investigated by Zaitsev and Polyanin within discrete-group
analysis. Using the integrable classes of this equation one generates the
integrable cosmological models. The corresponding metrics are presented. The
method is demonstrated for the special model with Ricci-flat spaces
and the 2-component perfect fluid source.Comment: LaTeX file, no figure
Spin multistability of cavity polaritons in a magnetic field
Spin transitions are studied theoretically and experimentally in a resonantly
excited system of cavity polaritons in a magnetic field. Weak pair interactions
in this boson system make possible fast and massive spin flips occurring at
critical amplitudes due to the interplay between amplitude dependent shifts of
eigenstates and the Zeeman splitting. Dominant spin of a condensate can be
toggled forth and back by tuning of the pump intensity only, which opens the
way for ultra-fast spin switchings of polariton condensates on a picosecond
timescale.Comment: 4 pages, 4 figure
The MRO-accompanied modes of Re-implantation into SiO2-host matrix: XPS and DFT based scenarios
The following scenarios of Re-embedding into SiO2-host by pulsed
Re-implantation were derived and discussed after XPS-and-DFT electronic
structure qualification: (i) low Re-impurity concentration mode -> the
formation of combined substitutional and interstitial impurities with
Re2O7-like atomic and electronic structures in the vicinity of oxygen
vacancies; (ii) high Re-impurity concentration mode -> the fabrication of
interstitial Re-metal clusters with the accompanied formation of ReO2-like
atomic structures and (iii) an intermediate transient mode with Re-impurity
concentration increase, when the precursors of interstitial defect clusters are
appeared and growing in the host-matrix structure occur. An amplification
regime of Re-metal contribution majority to the final Valence Band structure
was found as one of the sequences of intermediate transient mode. It was shown
that most of the qualified and discussed modes were accompanied by the MRO
(middle range ordering) distortions in the initial oxygen subnetwork of the
a-SiO2 host-matrix because of the appeared mixed defect configurations.Comment: 19 pages, 7 figures, accepted to J. Alloys and Compound
Electronic band gap reduction and intense luminescence in Co and Mn ion-implanted SiO
Cobalt and manganese ions are implanted into SiO over a wide range of
concentrations. For low concentrations, the Co atoms occupy interstitial
locations, coordinated with oxygen, while metallic Co clusters form at higher
implantation concentrations. For all concentrations studied here, Mn ions
remain in interstitial locations and do not cluster. Using resonant x-ray
emission spectroscopy and Anderson impurity model calculations, we determine
the strength of the covalent interaction between the interstitial ions and the
SiO valence band, finding it comparable to Mn and Co monoxides. Further, we
find an increasing reduction in the SiO electronic band gap for increasing
implantation concentration, due primarily to the introduction of Mn- and
Co-derived conduction band states. We also observe a strong increase in a band
of x-ray stimulated luminescence at 2.75 eV after implantation, attributed to
oxygen deficient centers formed during implantation.Comment: 8 pages, 6 figure
Quantum dynamics of non-relativistic particles and isometric embeddings
It is considered, in the framework of constrained systems, the quantum
dynamics of non-relativistic particles moving on a d-dimensional Riemannian
manifold M isometrically embedded in . This generalizes recent
investigations where M has been assumed to be a hypersurface of . We
show, contrary to recent claims, that constrained systems theory does not
contribute to the elimination of the ambiguities present in the canonical and
path integral formulations of the problem. These discrepancies with recent
works are discussed.Comment: Revtex, 14 page
- …