2 research outputs found
Glutathione Synthesis in Cancer Cells
Abstract: Tripeptide GSH is associated not only with the control and maintenance of redox cell homeostasis, but also with the processes of detoxification, proliferation, cell differentiation, and regulation of cell death. Disruptions in GSH synthesis and changes in the GSH/GSSG ratio are common for many pathological conditions, including malignant neoplasms. Numerous data indicate the importance of GSH and the GSH/GSSG ratio in the regulation of tumor cell viability, in the initiation of tumor development, progression, and drug resistance. However, control of the mechanism of GSH synthesis in malignant tumors remains poorly understood. This review discusses the features of GSH synthesis and its regulation in tumor cells. The role of GSH in the mechanisms of apoptosis, necroptosis, ferroptosis, and autophagy is considered. © 2020, Pleiades Publishing, Ltd
Oxidative Stress and Redox-Dependent Signaling in Prostate Cancer
Abstract: Tumor emergence and progression is complicated by the dual role of reactive oxygen species (ROS). Low concentrations of ROS are essential for many intracellular metabolic processes and cell proliferation, while excessive ROS generation disrupts the mechanisms of cancer suppression, leading to the cell damage and death. A long-term imbalance in the ROS/antioxidant ratio and upregulation of the ROS generation due to the reduced efficacy of the antioxidant defense system cause chronic oxidative stress resulting in the damage of proteins, lipid, and DNA molecules and cancer development. Numerous data demonstrate that prostate cancer (the most common cancer in males) is associated with the development of oxidative stress. However, the reasons for the emergence of prostate cancer, as well as changes in the redox signaling and cellular redox homeostasis in this disease, are still poorly understood. The review examines the role of prooxidant and antioxidant enzyme systems, the imbalance in their activity leading to the oxidative stress development, changes in the key components of redox signaling, and the role of microRNAs in the modulation of redox status of cancer cells in prostate cancer. © 2022, Pleiades Publishing, Ltd