279 research outputs found

    Synthesis of silver nanoparticles using a microfluidic impinging jet reactor

    Get PDF
    Synthesis of silver nanoparticles (NPs) in an impinging jet reactor (IJR) was investigated due to its unique properties of efficient mixing and lack of channel walls which avoid fouling. Silver NPs were formed at room temperature by reducing silver nitrate with sodium borohydride in the presence of sodium hydroxide. Two types of ligand were used to stabilize the NPs, trisodium citrate and polyvinyl alcohol (PVA). Weber number, the ratio between inertial forces and surface tension forces, is used to characterise flow in impinging jets. Flow regimes were investigated for Weber numbers in the range of 13-176. A liquid sheet/chain regime was identified at lower Weber numbers ( 90). Mixing time was found to be in the range 1-7 ms, using the Villermaux-Dushmann reaction system and Interaction by Exchange with the Mean mixing (IEM) model. Fastest mixing occurred at Weber number ca. 90. Using trisodium citrate as a ligand, NP size decreased from 7.9±5.8 nm to 3.4±1.4 nm when flow rate was increased from 32 ml/min to 72 ml/min using 0.5 mm jets; and from 6.4±3.4 nm to 5.1±4.6 nm when flow rate was increased from 20 ml/min to 32 ml/min using 0.25 mm jets. Using PVA as a ligand, NP size decreased from 5.4±1.6 nm to 4.2±1.1 nm using 0.5 mm jets and stayed relatively constant between 4.3±1 nm to 4.7±1.3 nm using 0.25 mm jets. In general the size of the NPs decreased when mixing was faster

    An engineering approach to synthesis of gold and silver nanoparticles by controlling hydrodynamics and mixing based on a coaxial flow reactor

    Get PDF
    In this work we present a detailed study of flow technology approaches that could open up new possibilities for nanoparticle synthesis. The synthesis of gold and silver nanoparticles (NPs) in a flow device based on a coaxial flow reactor (CFR) was investigated. The CFR comprised of an outer glass tube of 2 mm inner diameter (I.D.) and an inner glass tube whose I.D. varied between 0.142 and 0.798 mm. A split and recombine (SAR) mixer and coiled flow inverter (CFI) were further employed to alter the mixing conditions after the CFR. The ‘Turkevich’ method was used to synthesize gold NPs, with a CFR followed by a CFI. This assembly allows control over nucleation and growth through variation of residence time. Increasing the total flow rate from 0.25 ml/min to 3 ml/min resulted initially in a constant Au NP size, and beyond 1 ml/min to a size increase of Au NPs from 17.9 ± 2.1 nm to 23.9 ± 4.7 nm. The temperature was varied between 60 – 100 °C and a minimum Au NP size of 17.9 ± 2.1 nm was observed at 80 °C. Silver NPs were synthesized in a CFR followed by a SAR mixer, using sodium borohydride to reduce silver nitrate in the presence of trisodium citrate. The SAR mixer provided an enhancement of the well‐controlled laminar mixing in the CFR. Increasing silver nitrate concentration resulted in a decrease in Ag NP size from 5.5 ± 2.4 nm to 3.4 ± 1.4 nm. Different hydrodynamic conditions were studied in the CFR operated in isolation for silver NP synthesis. Increasing the Reynolds number from 132 to 530 in the inner tube created a vortex flow resulting in Ag NPs in the size range between 5.9 ± 1.5 nm to 7.7 ± 3.4 nm.. Decreasing the inner tube I.D. from 0.798 mm to 0.142 mm resulted in a decrease in Ag NP size from 10.5 ± 4.0 nm to 4.7 ± 1.4 nm. Thus, changing the thickness of the inner stream enabled control over size of the Ag NPs

    In-Silico Conceptualisation of Continuous Millifluidic Separators for Magnetic Nanoparticles

    Get PDF
    Magnetic nanoparticles are researched intensively not only for biomedical applications, but also for industrial applications including wastewater treatment and catalytic processes. Although these particles have been shown to have interesting surface properties in their bare form, their magnetisation remains a key feature, as it allows for magnetic separation. This makes them a promising carrier for precious materials and enables recovery via magnetic fields that can be turned on and off on demand, rather than using complex (nano)filtration strategies. However, designing a magnetic separator is by no means trivial, as the magnetic field and its gradient, the separator dimensions, the particle properties (such as size and susceptibility), and the throughput must be coordinated. This is showcased here for a simple continuous electromagnetic separator design requiring no expensive materials or equipment and facilitating continuous operation. The continuous electromagnetic separator chosen was based on a current-carrying wire in the centre of a capillary, which generated a radially symmetric magnetic field that could be described using cylindrical coordinates. The electromagnetic separator design was tested in-silico using a Lagrangian particle-tracking model accounting for hydrodynamics, magnetophoresis, as well as particle diffusion. This computational approach enabled the determination of separation efficiencies for varying particle sizes, magnetic field strengths, separator geometries, and flow rates, which provided insights into the complex interplay between these design parameters. In addition, the model identified the separator design allowing for the highest separation efficiency and determined the retention potential in both single and multiple separators in series. The work demonstrated that throughputs of ~1/4 L/h could be achieved for 250–500 nm iron oxide nanoparticle solutions, using less than 10 separator units in series
    corecore