51 research outputs found

    Toward the realization of a primary low-pressure standard using a superconducting microwave resonator

    Get PDF
    We describe a primary gas pressure standard based on the measurement of the refractive index of helium gas using a microwave resonant cavity in the range between 500 Pa and 20 kPa. To operate in this range, the sensitivity of the microwave refractive gas manometer (MRGM) to low-pressure variations is substantially enhanced by a niobium coating of the resonator surface, which becomes superconducting at temperatures below 9 K, allowing one to achieve a frequency resolution of about 0.3 Hz at 5.2 GHz, corresponding to a pressure resolution below 3 mPa at 20 Pa. The determination of helium pressure requires precise thermometry but is favored by the remarkable accuracy achieved by ab initio calculations of the thermodynamic and electromagnetic properties of the gas. The overall standard uncertainty of the MRGM is estimated to be of the order of 0.04%, corresponding to 0.2 Pa at 500 and 8.1 Pa at 20 kPa, with major contributions from thermometry and the repeatability of microwave frequency measurements. A direct comparison of the pressures realized by the MRGM with the reference provided by a traceable quartz transducer shows relative pressure differences between 0.025% at 20 kPa and -1.4% at 500 Pa. (c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    Quantum-based realizations of the pascal: status and progress of the EMPIR-project: quantumpascal

    Get PDF
    The QuantumPascal (QP) project combines the capabilities of 12 European institutions to enable traceable pressure measurements utilizing quantum-based methods that evaluate the number density instead of force per area to target the wide pressure range between 1 Pa and 3 MPa. This article summarizes the goals and results since the project start in June 201

    The IMERAPlus Joint Research Project For Determinations Of The Boltzmann Constant

    Get PDF
    Abstract. To provide new determinations of the Boltzmann constant, k, which has been asked for by the International Committee for Weights and Measures concerning preparative steps towards new definitions of the kilogram, the ampere, the kelvin and the mole, an iMERAPlus joint research project has coordinated the European activities in this field. In this major European research project the Boltzmann constant has been determined by various methods to support the new definition of the kelvin. The final results of the project are reviewed in this paper. Determinations of the Boltzmann constant k were achieved within the project by all three envisaged methods: acoustic gas thermometry, Doppler broadening technique, and dielectric constant gas thermometry. The results were exploited by the interdisciplinary Committee on Data for Science and Technology (CODATA) in their 2010 adjustment of recommended values for fundamental constants. As a result, the CODATA group recommended a value for k with a relative standard uncertainty about a factor of two smaller than the previous u(k)/k of 1.7×10 −6
    • …
    corecore