1,594 research outputs found
Observing object lifting errors modulates cortico-spinal excitability and improves object lifting performance.
Observing the actions of others has been shown to modulate cortico-spinal excitability and affect behaviour. However, the sensorimotor consequences of observing errors are not well understood. Here, participants watched actors lift identically weighted large and small cubes which typically elicit expectation-based fingertip force errors. One group of participants observed the standard overestimation and underestimation-style errors that characterise early lifts with these cubes (Error video--EV). Another group watched the same actors performing the well-adapted error-free lifts that characterise later, well-practiced lifts with these cubes (No error video--NEV). We then examined actual object lifting performance in the subjects who watched the EV and NEV. Despite having similar cognitive expectations and perceptions of heaviness, the group that watched novice lifters making errors themselves made fewer overestimation-style errors than those who watched the expert lifts. To determine how the observation of errors alters cortico-spinal excitability, we measured motor evoked potentials in separate group of participants while they passively observed these EV and NEV. Here, we noted a novel size-based modulation of cortico-spinal excitability when observing the expert lifts, which was eradicated when watching errors. Together, these findings suggest that individuals\u27 sensorimotor systems are sensitive to the subtle visual differences between observing novice and expert performance
Anisotropic suppression in nuclear collisions
The nuclear overlap zone in non-central relativistic heavy ion collisions is
azimuthally very asymmetric. By varying the angle between the axes of
deformation and the transverse direction of the pair momenta, the suppression
of and will oscillate in a characteristic way. Whereas the
average suppression is mostly sensitive to the early and high density stages of
the collision, the amplitude is more sensitive to the late stages. This effect
provides additional information on the suppression mechanisms such as
direct absorption on participating nucleons, comover absorption or formation of
a quark-gluon plasma. The behavior of the average suppression and its
amplitude with centrality of the collisions is discussed for SPS, RHIC and LHC
energies with and without a phase transition.Comment: Revised and extended version, new figure
and Suppression in Heavy Ion Collisions
We study the combined effect of nuclear absorption and final state
interaction with co-moving hadrons on the and suppression in
proton-nucleus and nucleus-nucleus collisions. We show that reasonable
description of the experimental data can be achieved with theoretically
meaningful values of the cross-sections involved and without introducing any
dicontinuity in the or survival probabilities.Comment: 10 pages, TeX, 2 Postscript figure
Viscosity and the Soft Ridge at RHIC
Correlation studies exhibit a ridge-like feature in rapidity and azimuthal
angle, with and without a jet trigger. We ask whether the feature in
untriggered correlations can be a consequence of transverse flow and viscous
diffusion.Comment: Proc. Quark Matter 2008, Jaipur, Indi
Exploring Early Parton Momentum Distribution with the Ridge from the Near-Side Jet
In a central nucleus-nucleus collision at high-energies, medium partons
kicked by a near-side jet acquire a momentum along the jet direction and
subsequently materialize as the observed ridge particles. They carry direct
information on the early parton momentum distribution which can be extracted by
using the ridge data for central AuAu collisions at \sqrt{s_{NN}}=200 GeV. The
extracted parton momentum distribution has a thermal-like transverse momentum
distribution but a non-Gaussian, relatively flat rapidity distribution at
mid-rapidity with sharp kinematic boundaries at large rapidities that depend on
the transverse momentum.Comment: In Proceedings of 20th International Conference on Ultra-Relativistic
Nucleus Nucleus Collisions, Jaipur, India, Feb. 4-10, 200
J/Psi suppression in colliding nuclei: statistical model analysis
We consider the suppression at a high energy heavy ion collision. An
ideal gas of massive hadrons in thermal and chemical equilibrium is formed in
the central region. The finite-size gas expands longitudinally in accordance
with Bjorken law. The transverse expansion in a form of the rarefaction wave is
taken into account. We show that suppression in such an environment,
when combined with the disintegration in nuclear matter, gives correct
evaluation of NA38 and NA50 data in a broad range of initial energy densities.Comment: 14 pages, 13 figures. Accepted for publication in Phys. Rev.
Suppression of J/psi and Psi' Production in High-Energy Pb on Pb Collisions
The anomalous J/psi suppression in Pb-Pb collisions at 158A GeV observed
recently by NA50 can be explained as due to the transition to a new phase of
strong J/psi absorption, which sets in when the local energy density exceeds
about 3.4 GeV/fm**3.Comment: 4 pages (REVTeX), includes 3 eps figures; revised to update result
Interpretations of suppression
We review the two main interpretations of suppression proposed in
the literature. The phase transition (or deconfining) scenario assumes that
below some critical value of the local energy density (or of some other
geometrical quantity which depends both on the colliding systems and on the
centrality of the collision), there is only nuclear absorption. Above this
critical value the absorptive cross-section is taken to be infinite, i.e. no
can survive in this hot region. In the hadronic scenario the
dissociates due both to nuclear absorption and to its interactions with
co-moving hadrons produced in the collision. No discontinuity exists in
physical observables. We show that an equally good description of the present
data is possible in either scenario.Comment: 12 pages, LaTeX, uses epsfig and ioplppt; review talk given by A.
Capella at the International Symposium on Strangness in Quark Matter,
Santorini (Greece), April 1997; Figs. 1 and 2 not available but can be found
in Refs. 13 and 6 respectivel
Coherent amplification of classical pion fields during the cooling of droplets of quark plasma
In the framework of the linear sigma model, we study the time evolution of a
system of classical and pion fields coupled to quarks. For this
purpose we solve numerically the classical transport equation for relativistic
quarks coupled to the nonlinear Klein-Gordon equations for the meson fields. We
examine evolution starting from variety of initial conditions corresponding to
spherical droplets of hot quark matter, which might mimic the behaviour of a
quark plasma produced in high-energy nucleus-nucleus collisions. For large
droplets we find a strong amplification of the pion field that oscillates in
time. This leads to a coherent production of pions with a particular isospin
and so would have similar observable effects to a disoriented chiral condensate
which various authors have suggested might be a signal of the chiral phase
transition. The mechanism for amplification of the pion field found here does
not rely on this phase transition and is better thought of as a "pion laser"
which is driven by large oscillations of the field.Comment: 12 TeX pages + 20 postscript figures, psfig styl
- …