22 research outputs found
Integrated Laboratory Demonstrations of Multi-Object Adaptive Optics on a Simulated 10-Meter Telescope at Visible Wavelengths
One important frontier for astronomical adaptive optics (AO) involves methods
such as Multi-Object AO and Multi-Conjugate AO that have the potential to give
a significantly larger field of view than conventional AO techniques. A second
key emphasis over the next decade will be to push astronomical AO to visible
wavelengths. We have conducted the first laboratory simulations of wide-field,
laser guide star adaptive optics at visible wavelengths on a 10-meter-class
telescope. These experiments, utilizing the UCO/Lick Observatory's Multi-Object
/ Laser Tomography Adaptive Optics (MOAO/LTAO) testbed, demonstrate new
techniques in wavefront sensing and control that are crucial to future on-sky
MOAO systems. We (1) test and confirm the feasibility of highly accurate
atmospheric tomography with laser guide stars, (2) demonstrate key innovations
allowing open-loop operation of Shack-Hartmann wavefront sensors (with errors
of ~30 nm) as will be needed for MOAO, and (3) build a complete error budget
model describing system performance. The AO system maintains a performance of
32.4% Strehl on-axis, with 24.5% and 22.6% at 10" and 15", respectively, at a
science wavelength of 710 nm (R-band) over the equivalent of 0.8 seconds of
simulation. The MOAO-corrected field of view is ~25 times larger in area than
that limited by anisoplanatism at R-band. Our error budget is composed of terms
verified through independent, empirical experiments. Error terms arising from
calibration inaccuracies and optical drift are comparable in magnitude to
traditional terms like fitting error and tomographic error. This makes a strong
case for implementing additional calibration facilities in future AO systems,
including accelerometers on powered optics, 3D turbulators, telescope and LGS
simulators, and external calibration ports for deformable mirrors.Comment: 29 pages, 11 figures, submitted to PAS
Optical design for the narrow field infrared adaptive optics system (NFIRAOS) petite on the thirty meter telescope
We describe an exploratory optical design for the Narrow Field InfraRed Adaptive Optics (AO) System (NFIRAOS) Petite, a proposed adaptive optics system for the Thirty Meter Telescope Project. NFIRAOS will feed infrared spectrograph and wide-field imaging instruments with a diffraction limited beam. The adaptive optics system will require multi-guidestar tomographic wavefront sensing (WFS) and multi-conjugate AO correction. The NFIRAOS Petite design specifications include two small 60 mm diameter deformable mirrors (DM's) used in a woofer/tweeter or multiconjugate arrangement. At least one DM would be a micro-electromechanical system (MEMS) DM. The AO system would correct a 10 to 30 arcsec diameter science field as well as laser guide stars (LGS's) located within a 60 arcsec diameter field and low-order or tip/tilt natural guide stars (NGS's) within a 60 arcsec diameter field. The WFS's are located downstream of the DM's so that they can be operated in true closed-loop, which is not necessarily a given in extremely large telescope adaptive optics design. The WFS's include adjustable corrector elements which correct the static aberrations of the AO relay due to field position and LGS distance height
Performance of MEMS-based visible-light adaptive optics at Lick Observatory: Closed- and open-loop control
At the University of California's Lick Observatory, we have implemented an
on-sky testbed for next-generation adaptive optics (AO) technologies. The
Visible-Light Laser Guidestar Experiments instrument (ViLLaGEs) includes
visible-light AO, a micro-electro-mechanical-systems (MEMS) deformable mirror,
and open-loop control of said MEMS on the 1-meter Nickel telescope at Mt.
Hamilton. In this paper we evaluate the performance of ViLLaGEs in open- and
closed-loop control, finding that both control methods give equivalent Strehl
ratios of up to ~ 7% in I-band and similar rejection of temporal power.
Therefore, we find that open-loop control of MEMS on-sky is as effective as
closed-loop control. Furthermore, after operating the system for three years,
we find MEMS technology to function well in the observatory environment. We
construct an error budget for the system, accounting for 130 nm of wavefront
error out of 190 nm error in the science-camera PSFs. We find that the dominant
known term is internal static error, and that the known contributions to the
error budget from open-loop control (MEMS model, position repeatability,
hysteresis, and WFS linearity) are negligible.Comment: 16 pages, 13 figures, to appear in Proc. SPIE 2010 Vol. 7736 Adaptive
Optics Systems II, high-resolution full-color version available at
http://spiedl.org
MEMS practice, from the lab to the telescope
Micro-electro-mechanical systems (MEMS) technology can provide for deformable
mirrors (DMs) with excellent performance within a favorable economy of scale.
Large MEMS-based astronomical adaptive optics (AO) systems such as the Gemini
Planet Imager are coming on-line soon. As MEMS DM end-users, we discuss our
decade of practice with the micromirrors, from inspecting and characterizing
devices to evaluating their performance in the lab. We also show MEMS wavefront
correction on-sky with the "Villages" AO system on a 1-m telescope, including
open-loop control and visible-light imaging. Our work demonstrates the maturity
of MEMS technology for astronomical adaptive optics.Comment: 14 pages, 15 figures, Invited Paper, SPIE Photonics West 201
Optical design for the narrow field infrared adaptive optics system (NFIRAOS) petite on the thirty meter telescope
We describe an exploratory optical design for the Narrow Field InfraRed Adaptive Optics (AO) System (NFIRAOS) Petite, a proposed adaptive optics system for the Thirty Meter Telescope Project. NFIRAOS will feed infrared spectrograph and wide-field imaging instruments with a diffraction limited beam. The adaptive optics system will require multi-guidestar tomographic wavefront sensing (WFS) and multi-conjugate AO correction. The NFIRAOS Petite design specifications include two small 60 mm diameter deformable mirrors (DM's) used in a woofer/tweeter or multiconjugate arrangement. At least one DM would be a micro-electromechanical system (MEMS) DM. The AO system would correct a 10 to 30 arcsec diameter science field as well as laser guide stars (LGS's) located within a 60 arcsec diameter field and low-order or tip/tilt natural guide stars (NGS's) within a 60 arcsec diameter field. The WFS's are located downstream of the DM's so that they can be operated in true closed-loop, which is not necessarily a given in extremely large telescope adaptive optics design. The WFS's include adjustable corrector elements which correct the static aberrations of the AO relay due to field position and LGS distance height
GPI Spectra of HR8799 C, D, and E in H-K Bands with KLIP Forward Modeling
We demonstrate KLIP forward modeling spectral extraction on Gemini Planet Imager coronagraphic data of HR8799, using PyKLIP. We report new and re-reduced spectrophotometry of HR8799 c, d, and e from H-K bands. We discuss a strategy for choosing optimal KLIP PSF subtraction parameters by injecting fake sources and recovering them over a range of parameters. The K1/K2 spectra for planets c and d are similar to previously published results from the same dataset. We also present a K band spectrum of HR8799e for the first time and show that our H-band spectra agree well with previously published spectra from the VLT/SPHERE instrument. We compare planets c, d, and e with M, L, and T-type field objects. All objects are consistent with low gravity mid-to-late L dwarfs, however, a lack of standard spectra for low gravity late L-type objects lead to poor fit for gravity. We place our results in context of atmospheric models presented in previous publications and discuss differences in the spectra of the three planets
Bulk wind estimation and prediction for adaptive optics control systems
Journal of the Optical Society of America AThe article of record as published may be found at http://dx.doi.org/10.1364/josaa.28.001566We present a wind-predictive controller for astronomical adaptive optics (AO) systems that is able to predict the motion of a single windblown layer in the presence of other, more slowly varying phase aberrations. This con- troller relies on fast, gradient-based optical flow estimation to identify the velocity of the translating layer and a recursive mean estimator to account for turbulence that varies on a time scale much slower than the operating speed of the AO loop. We derive the Cramer–Rao lower bound for the wind estimation problem and show that the proposed estimator is very close to achieving theoretical minimum-variance performance. We also present simu- lations using on-sky data that show significant Strehl increases from using this controller in realistic atmospheric conditions.Funded by Naval Postgraduate SchoolResearch funded by National Science Foundation Science (NSF) (AST 9876783) | Funded by Naval Postgraduate SchoolNaval Postgraduate Schoo