3 research outputs found

    Assessment of luteolin isolated from Eclipta alba leaves in animal models of epilepsy

    No full text
    Context: Eclipta alba (Linn) Hassk. (Asteraceae) has been reported to be a nerve tonic and has been used to treat epilepsy in folk medicine. Objective: The present study isolates and characterizes luteolin from E. alba and evaluates its antiepileptic potential in chemically induced acute and chronic models in mice. Materials and methods: The methanol extract (16.85% w/w) of E. alba leaves was subjected to fractionation for isolation of luteolin. In acute pentylenetetrazole (PTZ) model, luteolin (5, 10, 20 mg/kg, i.p.) was administered 30 min prior to PTZ injection (100 mg/kg) in Swiss albino mice. Kindling was induced by chronic administration of PTZ (35 mg/kg) on every alternate day (48 days). Luteolin was investigated on the course of kindling development and oxidative stress markers [reduced glutathione (GSH) and malondialdehyde (MDA)] in kindled mice. Results: Single-dose pretreatment with luteolin (10 and 20 mg/kg, i.p.) was found to be effective in an acute PTZ model (100% protection from mortality) and it did not exhibit any effect on motor coordination at the same doses. PTZ-induced kindling was significantly (p < 0.001) prevented by luteolin (5, 10, 20 mg/kg, i.p.) in a dose-dependent manner. Luteolin restored levels of reduced GSH (p < 0.001) and decreased the level of MDA (p < 0.001), a marker of lipid peroxidation. Discussion and conclusion: The results of the present study demonstrated that luteolin had an anticonvulsant effect in an acute PTZ model. Luteolin exhibited and inhibitory effect on the course of kindling and associated oxidative stress and hence could be a potential molecule in the treatment of epilepsy

    Neuroprotective effect of Cubebin: A dibenzylbutyrolactone lignan on scopolamine-induced amnesia in mice

    No full text
    Background & objectives: Acetylcholinesterase (AChE) inhibitors represent a major class of drugs which provide symptomatic relief and improvement in cognitive function in Alzheimer's disease (AD). In this study, cubebin, a dibenzylbutyrolactone lignan, was isolated from Piper cubeba and investigated for its AChE inhibitory activity in an attempt to explore its potential for memory-enhancing activities in mice. Methods: Molecular docking of cubebin was carried out followed by in vitro AChE activity. Mice were treated with cubebin (25 & 50 mg/kg; i.p.), for three days and memory impairment was induced by scopolamine (3 mg/kg; i.p.). Memory function was evaluated by Morris water maze (MWM) test. Biochemical parameters of oxidative stress and cholinergic function were estimated in brain. Results: Molecular docking study revealed that cubebin was well bound within the binding site of the AChE enzyme showing interactions such as π-π stacking and hydrogen bonding with residues present therein. Cubebin inhibited AChE enzyme in an in vitro assay with IC50value of 992 μM. Scopolamine administration caused a significant impairment of learning and memory in mice, as indicated by a marked decrease in MWM performance. Scopolamine administration also produced a significant enhancement of brain AChE activity and oxidative stress in mice brain. Pre-treatment of cubebin (25 and 50 mg/kg; i.p.) significantly prevented scopolamine-induced learning and memory deficits along with attenuation of scopolamine-induced rise in brain AChE activity and oxidative stress level. Interpretation & conclusions: Cubebin showed promising protective activity in scopolamine-induced spatial memory impairment in mice. This could be attributed to its brain AChE inhibition and antioxidant activity
    corecore