95 research outputs found
Role of Motility and the \u3cem\u3eflhDC\u3c/em\u3e Operon in \u3cem\u3eEscherichia coli\u3c/em\u3e MG1655 Colonization of the Mouse Intestine
Previously, we reported that the mouse intestine selected mutants of Escherichia coli MG1655 that have improved colonizing ability (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). These mutants grew 10 to 20% faster than their parent in mouse cecal mucus in vitro and 15 to 30% faster on several sugars found in the mouse intestine. The mutants were nonmotile and had deletions of various lengths beginning immediately downstream of an IS1 element located within the regulatory region of the flhDC operon, which encodes the master regulator of flagellum biosynthesis, FlhD4C2. Here we show that during intestinal colonization by wild-type E. coli strain MG1655, 45 to 50% of the cells became nonmotile by day 3 after feeding of the strain to mice and between 80 and 90% of the cells were nonmotile by day 15 after feeding. Ten nonmotile mutants isolated from mice were sequenced, and all were found to have flhDC deletions of various lengths. Despite this strong selection, 10 to 20% of the E. coli MG1655 cells remained motile over a 15-day period, suggesting that there is an as-yet-undefined intestinal niche in which motility is an advantage. The deletions appear to be selected in the intestine for two reasons. First, genes unrelated to motility that are normally either directly or indirectly repressed by FlhD4C2 but can contribute to maximum colonizing ability are released from repression. Second, energy normally used to synthesize flagella and turn the flagellar motor is redirected to growth
Role of Motility and the \u3cem\u3eflhDC\u3c/em\u3e Operon in \u3cem\u3eEscherichia coli\u3c/em\u3e MG1655 Colonization of the Mouse Intestine
Previously, we reported that the mouse intestine selected mutants of Escherichia coli MG1655 that have improved colonizing ability (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). These mutants grew 10 to 20% faster than their parent in mouse cecal mucus in vitro and 15 to 30% faster on several sugars found in the mouse intestine. The mutants were nonmotile and had deletions of various lengths beginning immediately downstream of an IS1 element located within the regulatory region of the flhDC operon, which encodes the master regulator of flagellum biosynthesis, FlhD4C2. Here we show that during intestinal colonization by wild-type E. coli strain MG1655, 45 to 50% of the cells became nonmotile by day 3 after feeding of the strain to mice and between 80 and 90% of the cells were nonmotile by day 15 after feeding. Ten nonmotile mutants isolated from mice were sequenced, and all were found to have flhDC deletions of various lengths. Despite this strong selection, 10 to 20% of the E. coli MG1655 cells remained motile over a 15-day period, suggesting that there is an as-yet-undefined intestinal niche in which motility is an advantage. The deletions appear to be selected in the intestine for two reasons. First, genes unrelated to motility that are normally either directly or indirectly repressed by FlhD4C2 but can contribute to maximum colonizing ability are released from repression. Second, energy normally used to synthesize flagella and turn the flagellar motor is redirected to growth
Mouse Intestine Selects Nonmotile \u3cem\u3eflhDC\u3c/em\u3e Mutants of \u3cem\u3eEscherichia coli\u3c/em\u3e MG1655 with Increased Colonizing Ability and Better Utilization of Carbon Sources
d-Gluconate which is primarily catabolized via the Entner-Doudoroff (ED) pathway, has been implicated as being important for colonization of the streptomycin-treated mouse large intestine by Escherichia coli MG1655, a human commensal strain. In the present study, we report that an MG1655 Δedd mutant defective in the ED pathway grows poorly not only on gluconate as a sole carbon source but on a number of other sugars previously implicated as being important for colonization, including l-fucose, d-gluconate, d-glucuronate, N-acetyl-d-glucosamine, d-mannose, and d-ribose. Furthermore, we show that the mouse intestine selects mutants of MG1655 Δedd and wild-type MG1655 that have improved mouse intestine-colonizing ability and grow 15 to 30% faster on the aforementioned sugars. The mutants of MG1655 Δedd and wild-type MG1655 selected by the intestine are shown to be nonmotile and to have deletions in the flhDC operon, which encodes the master regulator of flagellar biosynthesis. Finally, we show that ΔflhDC mutants of wild-type MG1655 and MG1655 Δedd constructed in the laboratory act identically to those selected by the intestine; i.e., they grow better than their respective parents on sugars as sole carbon sources and are better colonizers of the mouse intestine
Association of BRAFV600E Mutation and MicroRNA Expression with Central Lymph Node Metastases in Papillary Thyroid Cancer: A Prospective Study from Four Endocrine Surgery Centers
Background: Studies have demonstrated an association of the BRAFV600E mutation and microRNA (miR) expression with aggressive clinicopathologic features in papillary thyroid cancer (PTC). Analysis of BRAFV600E mutations with miR expression data may improve perioperative decision making for patients with PTC, specifically in identifying patients harboring central lymph node metastases (CLNM). Methods: Between January 2012 and June 2013, 237 consecutive patients underwent total thyroidectomy and prophylactic central lymph node dissection (CLND) at four endocrine surgery centers. All tumors were tested for the presence of the BRAFV600E mutation and miR-21, miR-146b-3p, miR-146b-5p, miR-204, miR-221, miR-222, and miR-375 expression. Bivariate and multivariable analyses were performed to examine associations between molecular markers and aggressive clinicopathologic features of PTC. Results: Multivariable logistic regression analysis of all clinicopathologic features found miR-146b-3p and miR-146b-5p to be independent predictors of CLNM, while the presence of BRAFV600E almost reached significance. Multivariable logistic regression analysis limited to only predictors available preoperatively (molecular markers, age, sex, and tumor size) found miR-146b-3p, miR-146b-5p, miR-222, and BRAFV600E mutation to predict CLNM independently. While BRAFV600E was found to be associated with CLNM (48% mutated in node-positive cases vs. 28% mutated in node-negative cases), its positive and negative predictive values (48% and 72%, respectively) limit its clinical utility as a stand-alone marker. In the subgroup analysis focusing on only classical variant of PTC cases (CVPTC), undergoing prophylactic lymph node dissection, multivariable logistic regression analysis found only miR-146b-5p and miR-222 to be independent predictors of CLNM, while BRAFV600E was not significantly associated with CLNM. Conclusion: In the patients undergoing prophylactic CLNDs, miR-146b-3p, miR-146b-5p, and miR-222 were found to be predictive of CLNM preoperatively. However, there was significant overlap in expression of these miRs in the two outcome groups. The BRAFV600E mutation, while being a marker of CLNM when considering only preoperative variables among all histological subtypes, is likely not a useful stand-alone marker clinically because the difference between node-positive and node-negative cases was small. Furthermore, it lost significance when examining only CVPTC. Overall, our results speak to the concept and interpretation of statistical significance versus actual applicability of molecular markers, raising questions about their clinical usefulness as individual prognostic markers.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140269/1/thy.2015.0378.pd
Genomic characterization of highly pathogenic avian influenza A H5N1 virusnewly emerged in dairy cattle
In March 2024, the emergence of highly pathogenic avian influenza (HPAI) A (H5N1) infections in dairy cattle was detected in the United Sates for the first time. We genetically characterize HPAI viruses from dairy cattle showing an abrupt drop in milk production, as well as from two cats, six wild birds, and one skunk. They share nearly identical genome sequences, forming a new genotype B3.13 within the 2.3.4.4b clade. B3.13 viruses underwent two reassortment events since 2023 and exhibit critical mutations in HA, M1, and NS genes but lack critical mutations in PB2 and PB1 genes, which enhance virulence or adaptation to mammals. The PB2 E627 K mutation in a human case associated with cattle underscores the potential for rapid evolution post infection, highlighting the need for continued surveillance to monitor public health threats.This article is published as Hu, Xiao, Anugrah Saxena, Drew R. Magstadt, Phillip C. Gauger, Eric Burrough, Jianqiang Zhang, Chris Siepker et al. "Genomic Characterization of Highly Pathogenic Avian Influenza A H5N1 Virus Newly Emerged in Dairy Cattle." Emerging Microbes & Infections just-accepted (2024): 2380421.
doi: https://doi.org/10.1080/22221751.2024.2380421. © 2024 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited
- …