32 research outputs found

    RhoH Regulates Subcellular Localization of ZAP-70 and Lck in T Cell Receptor Signaling

    Get PDF
    RhoH is an hematopoietic-specific, GTPase-deficient Rho GTPase that plays a role in T development. We investigated the mechanisms of RhoH function in TCR signaling. We found that the association between Lck and CD3ζ was impaired in RhoH-deficient T cells, due to defective translocation of both Lck and ZAP-70 to the immunological synapse. RhoH with Lck and ZAP-70 localizes in the detergent-soluble membrane fraction where the complex is associated with CD3ζ phosphorylation. To determine if impaired translocation of ZAP-70 was a major determinant of defective T cell development, Rhoh-/- bone marrow cells were transduced with a chimeric myristoylation-tagged ZAP-70. Myr-ZAP-70 transduced cells partially reversed the in vivo defects of RhoH-associated thymic development and TCR signaling. Together, our results suggest that RhoH regulates TCR signaling via recruitment of ZAP-70 and Lck to CD3ζ in the immunological synapse. Thus, we define a new function for a RhoH GTPase as an adaptor molecule in TCR signaling pathway

    Interactions of p59fyn and ZAP-70 with T-cell receptor activation motifs: defining the nature of a signalling motif.

    No full text
    The tyrosine-based activation motif is a 20- to 25-amino-acid sequence contained in the cytoplasmic domains of many hematopoietic receptors which is sufficient by itself to reconstitute signalling. This motif is characterized by two YXXL/I sequences separated by approximately 10 residues. The molecular basis of signalling by this motif is unknown. Here we demonstrate that the tyrosine-based activation motif is required and sufficient for association with the tyrosine kinases p59fyn and ZAP-70, suggesting that association with these kinases is a general feature of this motif. Focusing on the single activation motif present in epsilon, we analyzed which residues of the motif were critical for binding of p59fyn and ZAP-70. Surprisingly, we found that no single mutation of any residue of epsilon resulted in the loss of p59fyn association. In contrast, single mutations at five residues of the epsilon activating motif abrogated ZAP-70 binding. Both of the tyrosines and the leucine or isoleucine residues that follow them were critical. The spacing between the tyrosines was also important, as deletion of two residues disrupted binding of ZAP-70, although p59fyn binding was not disrupted. Most of the defined features of the tyrosine activation motif are therefore requirements for ZAP-70 binding. Interestingly, the interaction of ZAP-70 with the motif was dependent on the presence of both ZAP-70 SH2 domains and both of the tyrosine residues in the motif, suggesting that ZAP-70 interacts with two phosphotyrosine residues and that the binding of the two SH2 domains is cooperative. In addition, we demonstrate that the interaction between the tyrosine activation motif is direct and requires prior tyrosine phosphorylation of the motif. We propose that the activation of cells by the tyrosine activating motif occurs in four discrete steps: binding of p59fyn, phosphorylation of the motif, binding of ZAP-70, and activation of ZAP-70 kinase activity
    corecore