4 research outputs found

    Infusion Reactions After Receiving the Broadly Neutralizing Antibody VRC01 or Placebo to Reduce HIV-1 Acquisition: Results From the Phase 2b Antibody-Mediated Prevention Randomized Trials

    Get PDF
    Background: The antibody-mediated prevention (AMP) studies (HVTN 703/HPTN 081 and HVTN 704/HPTN 085) are harmonized phase 2b trials to assess HIV prevention efficacy and safety of intravenous infusion of anti-gp120 broadly neutralizing antibody VRC01. Antibodies for other indications can elicit infusion-related reactions (IRRs), often requiring premedication and limiting their application. We report on AMP study IRRs. Methods: From 2016 to 2018, 2699 HIV-uninfected, at-risk men and transgender adults in the Americas and Switzerland (704/085) and 1924 at-risk heterosexual women in sub-Saharan Africa (703/081) were randomized 1:1:1 to VRC01 10 mg/kg, 30 mg/kg, or placebo. Participants received infusions every 8 weeks (n = 10/participant) over 72 weeks, with 104 weeks of follow-up. Safety assessments were conducted before and after infusion and at noninfusion visits. A total of 40,674 infusions were administered. Results: Forty-seven participants (1.7%) experienced 49 IRRs in 704/085; 93 (4.8%) experienced 111 IRRs in 703/081 (P < 0.001). IRRs occurred more frequently in VRC01 than placebo recipients in 703/081 (P < 0.001). IRRs were associated with atopic history (P = 0.046) and with younger age (P = 0.023) in 703/081. Four clinical phenotypes of IRRs were observed: urticaria, dyspnea, dyspnea with rash, and "other." Urticaria was most prevalent, occurring in 25 (0.9%) participants in 704/085 and 41 (2.1%) participants in 703/081. Most IRRs occurred with the initial infusion and incidence diminished through the last infusion. All reactions were managed successfully without sequelae. Conclusions: IRRs in the AMP studies were uncommon, typically mild or moderate, successfully managed at the research clinic, and resolved without sequelae. Analysis is ongoing to explore potential IRR mechanisms

    Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants

    Get PDF
    IC80 1.5 to 34.5 nanograms per milliliter). We define the structural and functional determinants of binding for all four VOC-targeting antibodies and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting their potential in mitigating resistance development.The emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identified four receptor binding domain-targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 23 variants, including the B.1.1.7, B.1.351, P.1, B.1.429, B.1.526, and B.1.617 VOCs. Two antibodies are ultrapotent, with subnanomolar neutralization titers [half-maximal inhibitory concentration (IC50) 0.3 to 11.1 nanograms per millilite

    Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates

    Get PDF
    Background: Vaccines to prevent coronavirus disease 2019 (Covid-19) are urgently needed. The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines on viral replication in both upper and lower airways is important to evaluate in nonhuman primates. Methods: Nonhuman primates received 10 or 100 μg of mRNA-1273, a vaccine encoding the prefusion-stabilized spike protein of SARS-CoV-2, or no vaccine. Antibody and T-cell responses were assessed before upper- and lower-airway challenge with SARS-CoV-2. Active viral replication and viral genomes in bronchoalveolar-lavage (BAL) fluid and nasal swab specimens were assessed by polymerase chain reaction, and histopathological analysis and viral quantification were performed on lung-tissue specimens. Results: The mRNA-1273 vaccine candidate induced antibody levels exceeding those in human convalescent-phase serum, with live-virus reciprocal 50% inhibitory dilution (ID50) geometric mean titers of 501 in the 10-μg dose group and 3481 in the 100-μg dose group. Vaccination induced type 1 helper T-cell (Th1)-biased CD4 T-cell responses and low or undetectable Th2 or CD8 T-cell responses. Viral replication was not detectable in BAL fluid by day 2 after challenge in seven of eight animals in both vaccinated groups. No viral replication was detectable in the nose of any of the eight animals in the 100-μg dose group by day 2 after challenge, and limited inflammation or detectable viral genome or antigen was noted in lungs of animals in either vaccine group. Conclusions: Vaccination of nonhuman primates with mRNA-1273 induced robust SARS-CoV-2 neutralizing activity, rapid protection in the upper and lower airways, and no pathologic changes in the lung. (Funded by the National Institutes of Health and others.)

    Antibody Therapy for the Control of Viral Diseases: An Update

    No full text
    corecore