6 research outputs found
Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations
Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p < 5 × 10−9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies. Delineation of the genetic architecture of hematological traits in a multi-ethnic dataset allows identification of rare variants with strong effects specific to non-European populations and improved fine mapping of GWAS variants using the trans-ethnic approach
A role for CD147 in thymic development.
We have previously identified a mAb that binds to a molecule expressed preferentially on the surface of cycling thymocytes. In this study the molecule recognized by this mAb has been identified in the mouse as CD147 (basigin) by expression cloning. We show that CD147 expression correlates with cycling of immature thymocytes even in the absence of TCRbeta selection and that ligation of this molecule on immature fetal thymocytes inhibits their further development into mature T cells
Cnidarian gene expression patterns and the origins of bilaterality – are cnidarians reading the same game plan as "higher" animals?
[Extract] The past few years have seen a dramatic increase in the available data on gene sequence and gene expression for cnidarians and other "lower" Metazoa, and a flurry of recent papers has drawn on these to address the origins of bilaterality. Cnidarianhomologs of many genes that play key roles in the specification of both the A/P and D/V axes of bilaterians have been characterized, and their patterns of expression determined. Some of these expression patterns are consistent with the conservation of function between Cnidaria and Bilateria, but others clearly differ. Moreover, in some cases very different interpretations have been made on the basis of the same, or similar,\ud
data. In part, these differences reflect the inevitable uncertainties associated with the depth of the divergence between cnidarians and bilaterians. In this paper we briefly summarize the cnidarian data on gene expression\ud
and organization relevant to axis formation, the varying interpretations of these data, and where they conflict. Our conclusion is that the oral-aboral axis probably does correspond to the anterior-posterior axis of bilaterians,\ud
but that its polarity remains uncertain, and that many of the same genes are involved in determining the directive axis of cnidarians and the dorsal-ventral axis of bilaterians, but with sufficient differences in expression that exact homologies are uncertain